NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hutt, Stephen; Das, Sanchari; Baker, Ryan S. – International Educational Data Mining Society, 2023
The General Data Protection Regulation (GDPR) in the European Union contains directions on how user data may be collected, stored, and when it must be deleted. As similar legislation is developed around the globe, there is the potential for repercussions across multiple fields of research, including educational data mining (EDM). Over the past two…
Descriptors: Data Analysis, Decision Making, Data Collection, Foreign Countries
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Coleman, Chad; Baker, Ryan S.; Stephenson, Shonte – International Educational Data Mining Society, 2019
Determining which students are at risk of poorer outcomes -- such as dropping out, failing classes, or decreasing standardized examination scores -- has become an important area of research and practice in both K-12 and higher education. The detectors produced from this type of predictive modeling research are increasingly used in early warning…
Descriptors: Prediction, At Risk Students, Predictor Variables, Elementary Secondary Education
Peer reviewed Peer reviewed
Direct linkDirect link
Baker, Ryan S. – International Journal of Artificial Intelligence in Education, 2016
The initial vision for intelligent tutoring systems involved powerful, multi-faceted systems that would leverage rich models of students and pedagogies to create complex learning interactions. But the intelligent tutoring systems used at scale today are much simpler. In this article, I present hypotheses on the factors underlying this development,…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Hypothesis Testing, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
San Pedro, Maria Ofelia Z.; Baker, Ryan S.; Heffernan, Neil T. – Technology, Knowledge and Learning, 2017
Middle school is an important phase in the academic trajectory, which plays a major role in the path to successful post-secondary outcomes such as going to college. Despite this, research on factors leading to college-going choices do not yet utilize the extensive fine-grained data now becoming available on middle school learning and engagement.…
Descriptors: Educational Technology, Technology Uses in Education, Middle Schools, Postsecondary Education
Peer reviewed Peer reviewed
Direct linkDirect link
Baker, Ryan S.; Hershkovitz, Arnon; Rossi, Lisa M.; Goldstein, Adam B.; Gowda, Sujith M. – Journal of the Learning Sciences, 2013
We present a new method for analyzing a student's learning over time for a specific skill: analysis of the graph of the student's moment-by-moment learning over time. Moment-by-moment learning is calculated using a data-mined model that assesses the probability that a student learned a skill or concept at a specific time during learning (Baker,…
Descriptors: Learning Processes, Intelligent Tutoring Systems, Probability, Skill Development
Peer reviewed Peer reviewed
Direct linkDirect link
Gobert, Janice D.; Sao Pedro, Michael; Raziuddin, Juelaila; Baker, Ryan S. – Journal of the Learning Sciences, 2013
We present a method for assessing science inquiry performance, specifically for the inquiry skill of designing and conducting experiments, using educational data mining on students' log data from online microworlds in the Inq-ITS system (Inquiry Intelligent Tutoring System; www.inq-its.org). In our approach, we use a 2-step process: First we use…
Descriptors: Intelligent Tutoring Systems, Science Education, Inquiry, Science Process Skills