NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Lorge Thorndike Intelligence…1
What Works Clearinghouse Rating
Showing 91 to 105 of 266 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Holmes, Nathan M.; Westbrook, R. Frederick – Learning & Memory, 2014
Four experiments used rats to study appetitive-aversive transfer. Rats trained to eat a palatable food in a distinctive context and shocked in that context ate and did not freeze when tested 1 d later but froze and did not eat when tested 14 d later. These results were associatively mediated (Experiments 1 and 2), observed when rats were or were…
Descriptors: Animals, Fear, Food, Negative Reinforcement
Peer reviewed Peer reviewed
Direct linkDirect link
Tipps, Megan E.; Raybuck, Jonathan D.; Buck, Kari J.; Lattal, K. Matthew – Learning & Memory, 2014
Strain comparison studies have been critical to the identification of novel genetic and molecular mechanisms in learning and memory. However, even within a single learning paradigm, the behavioral data for the same strain can vary greatly, making it difficult to form meaningful conclusions at both the behavioral and cellular level. In fear…
Descriptors: Learning, Memory, Fear, Conditioning
Peer reviewed Peer reviewed
Direct linkDirect link
Kondo, Makoto; Nakamura, Yukiko; Ishida, Yusuke; Yamada, Takahiro; Shimada, Shoichi – Learning & Memory, 2014
The 5-HT [subscript 3] receptor, the only ionotropic 5-HT receptor, is expressed in limbic regions, including the hippocampus, amygdala, and cortex. However, it is not known whether it has a role in fear memory processes. Analysis of 5-HT [subscript 3A] receptor knockout mice in fear conditioning paradigms revealed that the 5-HT [subscript 3A]…
Descriptors: Fear, Memory, Cognitive Psychology, Cognitive Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Beeman, Christopher L.; Bauer, Philip S.; Pierson, Jamie L.; Quinn, Jennifer J. – Learning & Memory, 2013
Previous work has shown that damage to the dorsal hippocampus (DH) occurring at recent, but not remote, timepoints following acquisition produces a deficit in trace conditioned fear memory expression. The opposite pattern has been observed with lesions to the medial prefrontal cortex (mPFC). The present studies address: (1) whether these lesion…
Descriptors: Fear, Memory, Brain, Neurological Impairments
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Dongbeom; Pare, Denis; Nair, Satish S. – Learning & Memory, 2013
The relative contributions of plasticity in the amygdala vs. its afferent pathways to conditioned fear remain controversial. Some believe that thalamic and cortical neurons transmitting information about the conditioned stimulus (CS) to the lateral amygdala (LA) serve a relay function. Others maintain that thalamic and/or cortical plasticity is…
Descriptors: Fear, Brain Hemisphere Functions, Conditioning, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Brown, Kevin L.; Freeman, John H. – Learning & Memory, 2014
Eyeblink conditioning is a well-established model for studying the developmental neurobiology of associative learning and memory. However, age differences in extinction and subsequent reacquisition have yet to be studied using this model. The present study examined extinction and reacquisition of eyeblink conditioning in developing rats. In…
Descriptors: Animals, Conditioning, Neurological Organization, Associative Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Kwon, Jeong-Tae; Nakajima, Ryuichi; Hyung-Su, Kim; Jeong, Yire; Augustine, George J.; Han, Jin-Hee – Learning & Memory, 2014
In Pavlovian fear conditioning, the lateral amygdala (LA) has been highlighted as a key brain site for association between sensory cues and aversive stimuli. However, learning-related changes are also found in upstream sensory regions such as thalamus and cortex. To isolate the essential neural circuit components for fear memory association, we…
Descriptors: Conditioning, Brain Hemisphere Functions, Sensory Experience, Cues
Peer reviewed Peer reviewed
Direct linkDirect link
Gupta-Agarwal, Swati; Jarome, Timothy J.; Fernandez, Jordan; Lubin, Farah D. – Learning & Memory, 2014
It is well established that fear memory formation requires de novo gene transcription in the amygdala. We provide evidence that epigenetic mechanisms in the form of histone lysine methylation in the lateral amygdala (LA) are regulated by NMDA receptor (NMDAR) signaling and involved in gene transcription changes necessary for fear memory…
Descriptors: Memory, Genetics, Brain Hemisphere Functions, Neurological Organization
Peer reviewed Peer reviewed
Direct linkDirect link
Baker, Kathryn D.; McNally, Gavan P.; Richardson, Rick – Learning & Memory, 2013
Adolescent rats exhibit impaired extinction retention compared to pre-adolescent and adult rats. A single nonreinforced exposure to the conditioned stimulus (CS; a retrieval trial) given shortly before extinction has been shown in some circumstances to reduce the recovery of fear after extinction in adult animals. This study investigated whether a…
Descriptors: Memory, Fear, Animals, Adolescents
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Stella; Richardson, Rick – Learning & Memory, 2013
Recent research shows that while initial learning is dependent on "N"-methyl-D-aspartate receptors (NMDArs), relearning can be NMDAr-independent. In the present study we examined whether this switch also occurs following forgetting. The developing animal exhibits much more rapid rates of forgetting than adults, so infant rats were used. It was…
Descriptors: Memory, Animals, Fear, Novels
Peer reviewed Peer reviewed
Direct linkDirect link
Marter, Kathrin; Grauel, M. Katharina; Lewa, Carmen; Morgenstern, Laura; Buckemüller, Christina; Heufelder, Karin; Ganz, Marion; Eisenhardt, Dorothea – Learning & Memory, 2014
This study examines the role of stimulus duration in learning and memory formation of honeybees ("Apis mellifera"). In classical appetitive conditioning honeybees learn the association between an initially neutral, conditioned stimulus (CS) and the occurrence of a meaningful stimulus, the unconditioned stimulus (US). Thereby the CS…
Descriptors: Learning Processes, Memory, Classical Conditioning, Associative Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Andreatta, Marta; Fendt, Markus; Muhlberger, Andreas; Wieser, Matthias J.; Imobersteg, Stefan; Yarali, Ayse; Gerber, Bertram; Pauli, Paul – Learning & Memory, 2012
Two things are worth remembering about an aversive event: What made it happen? What made it cease? If a stimulus precedes an aversive event, it becomes a signal for threat and will later elicit behavior indicating conditioned fear. However, if the stimulus is presented upon cessation of the aversive event, it elicits behavior indicating…
Descriptors: Memory, Fear, Rewards, Stimuli
Peer reviewed Peer reviewed
Direct linkDirect link
Meyer, Heidi C.; Bucci, David J. – Learning & Memory, 2014
Previous studies have examined the maturation of learning and memory abilities during early stages of development. By comparison, much less is known about the ontogeny of learning and memory during later stages of development, including adolescence. In Experiment 1, we tested the ability of adolescent and adult rats to learn a Pavlovian negative…
Descriptors: Inhibition, Memory, Animals, Adolescents
Peer reviewed Peer reviewed
Direct linkDirect link
Jones, Carolyn E.; Ringuet, Stephanie; Monfils, Marie-H. – Learning & Memory, 2013
Pairing a previously neutral conditioned stimulus (CS; e.g., a tone) to an aversive unconditioned stimulus (US; e.g., a footshock) leads to associative learning such that the tone alone comes to elicit a conditioned response (e.g., freezing). We have previously shown that an extinction session that occurs within the reconsolidation window…
Descriptors: Fear, Conditioning, Stimuli, Associative Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Lugo, Joaquin N.; Smith, Gregory D.; Morrison, Jessica B.; White, Jessika – Learning & Memory, 2013
The phosphatase and tensin homolog detected on chromosome 10 (PTEN) gene product modulates activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. The PI3K pathway has been found to be involved in the regulation of the fragile X mental retardation protein, which is important for long-term depression and in the formation of new…
Descriptors: Fear, Conditioning, Mental Retardation, Genetic Disorders
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  18