Publication Date
In 2025 | 1 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 14 |
Since 2006 (last 20 years) | 16 |
Descriptor
Artificial Intelligence | 17 |
Identification | 17 |
Man Machine Systems | 17 |
Natural Language Processing | 8 |
Prediction | 7 |
Accuracy | 6 |
At Risk Students | 5 |
College Students | 4 |
Ethics | 4 |
Technology Uses in Education | 4 |
Writing (Composition) | 4 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 14 |
Reports - Research | 12 |
Reports - Evaluative | 2 |
Collected Works - Proceedings | 1 |
Dissertations/Theses -… | 1 |
Information Analyses | 1 |
Reports - Descriptive | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 7 |
Postsecondary Education | 7 |
Elementary Secondary Education | 2 |
Grade 9 | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Location
Asia | 1 |
Australia | 1 |
Brazil | 1 |
Connecticut | 1 |
Denmark | 1 |
Egypt | 1 |
Estonia | 1 |
Florida | 1 |
Germany | 1 |
Greece | 1 |
Hawaii | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Debora Weber-Wulff; Alla Anohina-Naumeca; Sonja Bjelobaba; Tomáš Foltýnek; Jean Guerrero-Dib; Olumide Popoola; Petr Šigut; Lorna Waddington – International Journal for Educational Integrity, 2023
Recent advances in generative pre-trained transformer large language models have emphasised the potential risks of unfair use of artificial intelligence (AI) generated content in an academic environment and intensified efforts in searching for solutions to detect such content. The paper examines the general functionality of detection tools for…
Descriptors: Artificial Intelligence, Identification, Man Machine Systems, Accuracy
Okan Bulut; Tarid Wongvorachan; Surina He; Soo Lee – Discover Education, 2024
Despite its proven success in various fields such as engineering, business, and healthcare, human-machine collaboration in education remains relatively unexplored. This study aims to highlight the advantages of human-machine collaboration for improving the efficiency and accuracy of decision-making processes in educational settings. High school…
Descriptors: High School Students, Dropouts, Identification, Man Machine Systems
Cingillioglu, Ilker – International Journal of Information and Learning Technology, 2023
Purpose: With the advent of ChatGPT, a sophisticated generative artificial intelligence (AI) tool, maintaining academic integrity in all educational settings has recently become a challenge for educators. This paper discusses a method and necessary strategies to confront this challenge. Design/methodology/approach: In this study, a language model…
Descriptors: Artificial Intelligence, Essays, Integrity, Cheating
Tal Waltzer; Celeste Pilegard; Gail D. Heyman – International Journal for Educational Integrity, 2024
The release of ChatGPT in 2022 has generated extensive speculation about how Artificial Intelligence (AI) will impact the capacity of institutions for higher learning to achieve their central missions of promoting learning and certifying knowledge. Our main questions were whether people could identify AI-generated text and whether factors such as…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, College Students
Edmund De Leon Evangelista – Contemporary Educational Technology, 2025
The rapid advancement of artificial intelligence (AI) technologies, particularly OpenAI's ChatGPT, has significantly impacted higher education institutions (HEIs), offering opportunities and challenges. While these tools enhance personalized learning and content generation, they threaten academic integrity, especially in assessment environments.…
Descriptors: Artificial Intelligence, Integrity, Educational Strategies, Natural Language Processing
Micir, Ian; Swygert, Kimberly; D'Angelo, Jean – Journal of Applied Testing Technology, 2022
The interpretations of test scores in secure, high-stakes environments are dependent on several assumptions, one of which is that examinee responses to items are independent and no enemy items are included on the same forms. This paper documents the development and implementation of a C#-based application that uses Natural Language Processing…
Descriptors: Artificial Intelligence, Man Machine Systems, Accuracy, Efficiency
Jang, Yeonju; Choi, Seongyune; Jung, Heeseok; Kim, Hyeoncheol – Education and Information Technologies, 2022
Predicting students' performance in advance could help assist the learning process; if "at-risk" students can be identified early on, educators can provide them with the necessary educational support. Despite this potential advantage, the technology for predicting students' performance has not been widely used in education due to…
Descriptors: Elementary Secondary Education, Teachers, Parents, Educational Policy
Gary Lieberman – Journal of Instructional Research, 2024
Artificial intelligence (AI) first made its entry into higher education in the form of paraphrasing tools. These tools were used to take passages that were copied from sources, and through various methods, disguised the original text to avoid academic integrity violations. At first, these tools were not very good and produced nearly…
Descriptors: Artificial Intelligence, Higher Education, Integrity, Ethics
Jae Q. J. Liu; Kelvin T. K. Hui; Fadi Al Zoubi; Zing Z. X. Zhou; Dino Samartzis; Curtis C. H. Yu; Jeremy R. Chang; Arnold Y. L. Wong – International Journal for Educational Integrity, 2024
The application of artificial intelligence (AI) in academic writing has raised concerns regarding accuracy, ethics, and scientific rigour. Some AI content detectors may not accurately identify AI-generated texts, especially those that have undergone paraphrasing. Therefore, there is a pressing need for efficacious approaches or guidelines to…
Descriptors: Artificial Intelligence, Investigations, Identification, Human Factors Engineering
A Machine Learning-Based Computational System Proposal Aiming at Higher Education Dropout Prediction
Nicoletti, Maria do Carmo; de Oliveira, Osvaldo Luiz – Higher Education Studies, 2020
In the literature related to higher education, the concept of dropout has been approached from several perspectives and, over the years, its definition has been influenced by the use of diversified semantic interpretations. In a general higher education environment dropout can be broadly characterized as the act of a student engaged in a course…
Descriptors: Artificial Intelligence, Man Machine Systems, Computation, Prediction
Cantin-Garside, Kristine D.; Kong, Zhenyu; White, Susan W.; Antezana, Ligia; Kim, Sunwook; Nussbaum, Maury A. – Journal of Autism and Developmental Disorders, 2020
Traditional self-injurious behavior (SIB) management can place compliance demands on the caregiver and have low ecological validity and accuracy. To support an SIB monitoring system for autism spectrum disorder (ASD), we evaluated machine learning methods for detecting and distinguishing diverse SIB types. SIB episodes were captured with body-worn…
Descriptors: Self Destructive Behavior, Autism, Pervasive Developmental Disorders, Identification
Smith, Bevan I.; Chimedza, Charles; Bührmann, Jacoba H. – International Journal of Artificial Intelligence in Education, 2020
Identifying students at risk of failing a course has potential benefits, such as recommending the At-Risk students to various interventions that could improve pass rates. The challenges however, are firstly in measuring how effective these interventions are, i.e. measuring treatment effects, and secondly, to not only predict overall (average)…
Descriptors: Artificial Intelligence, Man Machine Systems, Probability, Scoring
Anna Y. Q. Huang; Jei Wei Chang; Albert C. M. Yang; Hiroaki Ogata; Shun Ting Li; Ruo Xuan Yen; Stephen J. H. Yang – Educational Technology & Society, 2023
To improve students' learning performance through review learning activities, we developed a personalized intervention tutoring approach that leverages learning analysis based on artificial intelligence. The proposed intervention first uses text-processing artificial intelligence technologies, namely bidirectional encoder representations from…
Descriptors: Academic Achievement, Tutoring, Artificial Intelligence, Individualized Instruction
Yang, Jie; DeVore, Seth; Hewagallage, Dona; Miller, Paul; Ryan, Qing X.; Stewart, John – Physical Review Physics Education Research, 2020
Machine learning algorithms have recently been used to predict students' performance in an introductory physics class. The prediction model classified students as those likely to receive an A or B or students likely to receive a grade of C, D, F or withdraw from the class. Early prediction could better allow the direction of educational…
Descriptors: Artificial Intelligence, Man Machine Systems, Identification, At Risk Students
Galatas, Georgios – ProQuest LLC, 2013
An Ambient Intelligence Environment is meant to sense and respond to the presence of people, using its embedded technology. In order to effectively sense the activities and intentions of its inhabitants, such an environment needs to utilize information captured from multiple sensors and modalities. By doing so, the interaction becomes more natural…
Descriptors: Speech, Robotics, Artificial Intelligence, Environment
Previous Page | Next Page »
Pages: 1 | 2