NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1445437
Record Type: Journal
Publication Date: 2023-Oct
Pages: 6
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0021-9584
EISSN: EISSN-1938-1328
Sensitive Detection of Trace Vitamin C via Enzyme-Like Catalysis of S Defect-Rich Ultrathin 2D MoS[subscript 2]: Comprehensive Innovative Experiments on Two-Dimensional Materials for Undergraduates
Wenyuan Hu; Hongbo Li; Guoqing Zhong; Dingming Yang; Qiying Jiang; Huan Zhang; Qiulin Deng
Journal of Chemical Education, v100 n10 p4025-4030 2023
Enzyme-like catalysis is the use of artificial catalysts to catalyze chemical reactions, which has the characteristics of enzymatic catalysis, such as high selectivity, high efficiency, and mild reaction conditions. In recent years, 2D materials, thickness ranging from a single to several atomic layers, have become a hot research topic in the field of materials, while 2D materials happen to have enzyme-like catalysis property. Among them, 2H-MoS[subscript 2] is easy to peel away to form the 2D structure due to covalent bonds between S-Mo-Sin each layer and van der Waals forces between layers. Meanwhile, using a mechanical solid-phase chemical method to produce its S defect, the S defect can significantly improve the catalytic efficiency and achieve rapid catalytic oxidation of TMB (3,3,5,5-tetramethylbenzidine) for quantitative detection of trace ascorbic acid. The experiment described in this study is designed for senior undergraduates majoring in chemistry, materials, chemical engineering, catalysis, etc., as part of their training in comprehensive chemical experimentation. This experiment can introduce students to the synthesis of 2D materials, enzyme-like catalytic reactions, and the principles for the use of analytical instruments. Integrating this experiment into undergraduate teaching will (1) stimulate students to think about developing innovative detection methods answering to actual scientific and social needs; (2) familiarize the students with serious and rigorous scientific method through the process of exploring and optimizing detection methods; and (3) increase students' understanding of catalytic analysis and detection through exploration of innovative detection methods, thereby raising their practical skills to a high-level.
Division of Chemical Education, Inc. and ACS Publications Division of the American Chemical Society. 1155 Sixteenth Street NW, Washington, DC 20036. Tel: 800-227-5558; Tel: 202-872-4600; e-mail: eic@jce.acs.org; Web site: http://pubs.acs.org/jchemeduc
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A