NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1429173
Record Type: Journal
Publication Date: 2024
Pages: 15
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1049-4820
EISSN: EISSN-1744-5191
Available Date: N/A
An Emotion Analysis Dataset of Course Comment Texts in Massive Online Learning Course Platforms
Interactive Learning Environments, v32 n4 p1219-1233 2024
Datasets are critical for emotion analysis in the machine learning field. This study aims to explore emotion analysis datasets and related benchmarks in online learning, since, currently, there are very few studies that explore the same. We have scientifically labeled the topic and nine-category emotion of 4715 comment texts in online learning platforms using the "three-person voting label method" based on the "sentence-level" and multi-category labeling dimensions with our self-developed system. After testing the consistency of the labeling results using the "Fleiss Kappa" method, we found that the consistency of the dataset was about 0.51, representing a moderate strength of agreement. Based on the dataset, the prediction accuracy of the Long-Short Term Memory (LSTM) method is about 0.68. This dataset provides a benchmark for the multi-category emotion dataset in the Chinese online learning field. It can provide a basis for the subsequent solution of emotion analysis, monitoring, and intervention in the education field. It can also provide a reference for constructing subsequent datasets in the education field.
Routledge. Available from: Taylor & Francis, Ltd. 530 Walnut Street Suite 850, Philadelphia, PA 19106. Tel: 800-354-1420; Tel: 215-625-8900; Fax: 215-207-0050; Web site: http://www.tandf.co.uk/journals
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Identifiers - Location: China
Grant or Contract Numbers: N/A
Author Affiliations: N/A