Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 14 |
Descriptor
Fear | 17 |
Neurology | 17 |
Conditioning | 15 |
Memory | 12 |
Animals | 10 |
Brain Hemisphere Functions | 9 |
Brain | 6 |
Genetics | 6 |
Learning Processes | 5 |
Auditory Stimuli | 3 |
Inhibition | 3 |
More ▼ |
Source
Learning & Memory | 17 |
Author
Publication Type
Journal Articles | 17 |
Reports - Research | 16 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Aten, Sydney; Hansen, Katelin F.; Snider, Kaitlin; Wheaton, Kelin; Kalidindi, Anisha; Garcia, Ashley; Alzate-Correa, Diego; Hoyt, Kari R.; Obrietan, Karl – Learning & Memory, 2018
The microRNA miR-132 serves as a key regulator of a wide range of plasticity-associated processes in the central nervous system. Interestingly, miR-132 expression has also been shown to be under the control of the circadian timing system. This finding, coupled with work showing that miR-132 is expressed in the hippocampus, where it influences…
Descriptors: Neurology, Brain Hemisphere Functions, Memory, Animals
Meyer, Mariah A. A.; Corcoran, Kevin A.; Chen, Helen J.; Gallego, Sonia; Li, Guanguan; Tiruveedhula, Veda V.; Cook, James M.; Radulovic, Jelena – Learning & Memory, 2017
Retrieval of fear memories can be state-dependent, meaning that they are best retrieved if the brain states at encoding and retrieval are similar. Such states can be induced by activating extrasynaptic ?-aminobutyric acid type A receptors (GABAAR) with the broad a-subunit activator gaboxadol. However, the circuit mechanisms and specific subunits…
Descriptors: Neurology, Brain, Brain Hemisphere Functions, Fear
Williams, Amy R.; Kim, Earnest S.; Lattal, K. Matthew – Learning & Memory, 2019
A fundamental property of extinction is that the behavior that is suppressed during extinction can be unmasked through a number of postextinction procedures. Of the commonly studied unmasking procedures (spontaneous recovery, reinstatement, contextual renewal, and rapid reacquisition), rapid reacquisition is the only approach that allows a direct…
Descriptors: Fear, Conditioning, Context Effect, Memory
Ferrara, Nicole C.; Cullen, Patrick K.; Pullins, Shane P.; Rotondo, Elena K.; Helmstetter, Fred J. – Learning & Memory, 2017
Generalization of fear can involve abnormal responding to cues that signal safety and is common in people diagnosed with post-traumatic stress disorder. Differential auditory fear conditioning can be used as a tool to measure changes in fear discrimination and generalization. Most prior work in this area has focused on elevated amygdala activity…
Descriptors: Fear, Brain, Memory, Discrimination Learning
Goode, Travis D.; Maren, Stephen – Learning & Memory, 2017
Surviving threats in the environment requires brain circuits for detecting (or anticipating) danger and for coordinating appropriate defensive responses (e.g., increased cardiac output, stress hormone release, and freezing behavior). The bed nucleus of the stria terminalis (BNST) is a critical interface between the "affective…
Descriptors: Learning Processes, Fear, Brain, Neurology
Vernon, Jeffrey; Irvine, Elaine E.; Peters, Marco; Jeyabalan, Jeshmi; Giese, K. Peter – Learning & Memory, 2016
Phosphorylation is a ubiquitous post-translational modification of proteins, and a known physiological regulator of K[superscript +] channel function. Phosphorylation of K[superscript +] channels by kinases has long been presumed to regulate neuronal processing and behavior. Although circumstantial evidence has accumulated from behavioral studies…
Descriptors: Physiology, Neurological Organization, Cognitive Processes, Genetics
Stafford, James M.; Maughan, DeeAnna K.; Ilioi, Elena C.; Lattal, K. Matthew – Learning & Memory, 2013
An issue of increasing theoretical and translational importance is to understand the conditions under which learned fear can be suppressed, or even eliminated. Basic research has pointed to extinction, in which an organism is exposed to a fearful stimulus (such as a context) in the absence of an expected aversive outcome (such as a shock). This…
Descriptors: Memory, Fear, Learning Processes, Brain
Pavesi, Eloisa; Gooch, Allison; Lee, Elizabeth; Fletcher, Max L. – Learning & Memory, 2013
We investigated the role of cholinergic neurotransmission in olfactory fear learning. Mice receiving pairings of odor and foot shock displayed fear to the trained odor the following day. Pretraining injections of the nicotinic antagonist mecamylamine had no effect on subsequent freezing, while the muscarinic antagonist scopolamine significantly…
Descriptors: Olfactory Perception, Fear, Conditioning, Animals
Wiltgen, Brian J.; Wood, Alynda N.; Levy, Brynne – Learning & Memory, 2011
The N-methyl-D-aspartate receptor (NMDAR) is thought to be essential for synaptic plasticity and learning. However, recent work indicates that the role of this receptor depends on the prior history of the research subject. For example, animals trained on a hippocampus-dependent learning task are subsequently able to acquire new information in the…
Descriptors: Animals, Memory, Neurology, Experience
Laurent, Vincent; Westbrook, R. Frederick – Learning & Memory, 2010
Four experiments used rats to study the role of the basolateral amygdala (BLA) in the reinstatement and extinction of fear responses (freezing) to a previously extinguished conditioned stimulus (CS). In Experiment 1, BLA inactivation before pairing the extinguished CS with the shock unconditioned stimulus (US) or before US-alone exposure impaired…
Descriptors: Stimuli, Brain Hemisphere Functions, Inhibition, Fear
Foster, Jennifer A.; Burman, Michael A. – Learning & Memory, 2010
Long-term memory for fear of an environment (contextual fear conditioning) emerges later in development (postnatal day; PD 23) than long-term memory for fear of discrete stimuli (PD 17). As contextual, but not explicit cue, fear conditioning relies on the hippocampus; this has been interpreted as evidence that the hippocampus is not fully…
Descriptors: Conditioning, Neurology, Long Term Memory, Developmental Stages
Laurent, Vincent; Westbrook, R. Frederick – Learning & Memory, 2008
We studied the roles of the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) in learning and relearning to inhibit context conditioned fear (freezing) in extinction. In Experiment 1, pre-extinction BLA infusion of the NMDA receptor (NMDAr) antagonist, ifenprodil, impaired the development and retention of inhibition but…
Descriptors: Inhibition, Fear, Conditioning, Brain Hemisphere Functions
Maren, Stephen; Hobin, Jennifer A. – Learning & Memory, 2007
Pavlovian fear conditioning is a robust and enduring form of emotional learning that provides an ideal model system for studying contextual regulation of memory retrieval. After extinction the expression of fear conditional responses (CRs) is context-specific: A conditional stimulus (CS) elicits greater conditional responding outside compared with…
Descriptors: Fear, Classical Conditioning, Memory, Neurology
Biedenkapp, Joseph C.; Rudy, Jerry W. – Learning & Memory, 2007
Contextual fear conditioning was maintained over a 15-day retention interval suggesting no forgetting of the conditioning experience. However, a more subtle generalization test revealed that, as the retention interval increased, rats showed enhanced generalized fear to an altered context. Preexposure to the training context prior to conditioning,…
Descriptors: Intervals, Conditioning, Fear, Generalization
Ressler, Kerry J.; Rattiner, Lisa M.; Davis, Michael – Learning & Memory, 2004
Brain-derived neurotrophic factor (BDNF) has been implicated as a molecular mediator of learning and memory. The BDNF gene contains four differentially regulated promoters that generate four distinct mRNA transcripts, each containing a unique noncoding 5[prime]-exon and a common 3[prime]-coding exon. This study describes novel evidence for the…
Descriptors: Fear, Learning Processes, Brain, Neurology
Previous Page | Next Page ยป
Pages: 1 | 2