NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Martin, Kiley; Musaus, Madeline; Navabpour, Shaghayegh; Gustin, Aspen; Ray, W. Keith; Helm, Richard F.; Jarome, Timothy J. – Learning & Memory, 2021
Strong evidence supports a role for protein degradation in fear memory formation. However, these data have been largely done in only male animals. Here, we found that following contextual fear conditioning, females, but not males, had increased levels of proteasome activity and K48 polyubiquitin protein targeting in the dorsal hippocampus, the…
Descriptors: Fear, Memory, Gender Differences, Animals
Peer reviewed Peer reviewed
Direct linkDirect link
Kwapis, Janine L.; Jarome, Timothy J.; Helmstetter, Fred J. – Learning & Memory, 2015
The extinction of delay fear conditioning relies on a neural circuit that has received much attention and is relatively well defined. Whether this established circuit also supports the extinction of more complex associations, however, is unclear. Trace fear conditioning is a better model of complex relational learning, yet the circuit that…
Descriptors: Brain Hemisphere Functions, Learning Processes, Conditioning, Role
Peer reviewed Peer reviewed
Direct linkDirect link
Jarome, Timothy J.; Kwapis, Janine L.; Hallengren, Jada J.; Wilson, Scott M.; Helmstetter, Fred J. – Learning & Memory, 2014
Numerous studies have suggested a role for ubiquitin-proteasome-mediated protein degradation in learning-dependent synaptic plasticity; however, very little is known about how protein degradation is regulated at the level of the proteasome during memory formation. The ubiquitin-specific protease 14 (USP14) is a proteasomal deubiquitinating enzyme…
Descriptors: Cognitive Processes, Cognitive Psychology, Brain Hemisphere Functions, Inhibition
Peer reviewed Peer reviewed
Direct linkDirect link
Gupta-Agarwal, Swati; Jarome, Timothy J.; Fernandez, Jordan; Lubin, Farah D. – Learning & Memory, 2014
It is well established that fear memory formation requires de novo gene transcription in the amygdala. We provide evidence that epigenetic mechanisms in the form of histone lysine methylation in the lateral amygdala (LA) are regulated by NMDA receptor (NMDAR) signaling and involved in gene transcription changes necessary for fear memory…
Descriptors: Memory, Genetics, Brain Hemisphere Functions, Neurological Organization