ERIC Number: EJ1336842
Record Type: Journal
Publication Date: 2022-May
Pages: 32
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1360-2357
EISSN: N/A
Available Date: N/A
HELA: A Novel Hybrid Ensemble Learning Algorithm for Predicting Academic Performance of Students
Education and Information Technologies, v27 n4 p4521-4552 May 2022
Education plays a major role in the development of the consciousness of the whole society. Education has been improved by analyzing educational data related to student academic performance. By using data mining techniques and algorithms on data from the educational environment, students' performances can be predicted. In this study, a novel Hybrid Ensemble Learning Algorithm (HELA) is proposed to predict the academic performance of students. The prediction results obtained from base classifiers namely Gradient Boosting, Extreme Gradient Boosting, Light Gradient Boosting Machine, and different combinations of these algorithms are given as input to the Super Learner algorithm. Hyper-parameters of base classifiers are optimized with a Random Search algorithm. Students' performances in Math and Portuguese classes are predicted by the proposed algorithm. In the experimental results, 96.6% and 91.2% accuracy values are obtained for the Mathematics course, and the Portuguese course, respectively. This paper is the first study, to our knowledge, to integrate the boosting and stacking-based ensemble learning algorithm for the prediction of students' academic performance that gives better predictive results with high efficiency.
Descriptors: Grade Prediction, Academic Achievement, Data Analysis, Data Collection, Mathematics, Evaluation Methods
Springer. Available from: Springer Nature. One New York Plaza, Suite 4600, New York, NY 10004. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-460-1700; e-mail: customerservice@springernature.com; Web site: https://bibliotheek.ehb.be:2123/
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Data File: URL: https://archive.ics.uci.edu/ml/datasets/Student+Performance
Author Affiliations: N/A