NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 61 to 75 of 237 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Green, Malcolm L. H.; Parkin, Gerard – Journal of Chemical Education, 2014
The Covalent Bond Classification (CBC) method provides a means to classify covalent molecules according to the number and types of bonds that surround an atom of interest. This approach is based on an elementary molecular orbital analysis of the bonding involving the central atom (M), with the various interactions being classified according to the…
Descriptors: Science Instruction, Inorganic Chemistry, College Science, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Charlton, Michael; Eriksson, Stefan; Isaac, C. Aled; Madsen, Niels; van der Werf, Dirk Peter – Physics Education, 2013
We describe recent experiments at CERN in which antihydrogen, an atom made entirely of antimatter, has been held in a magnetic minimum neutral atom trap and subjected to microwave radiation to induce a resonant quantum transition in the anti-atom. We discuss how this, the first experiment to observe an interaction between an antihydrogen atom and…
Descriptors: Science Instruction, Science Experiments, Physics, Magnets
Peer reviewed Peer reviewed
Direct linkDirect link
Chapon, A.; Gibelin, J.; Lopez, O.; Cussol, D.; Durand, D.; Desrues, Ph.; de Préaumont, H. Franck; Lemière, Y.; Perronnel, J.; Steckmeyer, J. C. – Physics Education, 2015
The Billotron is a device designed and built by the LPC Caen to illustrate the methods with which physicists are able to study the basic structure of matter, in particular the nucleus of the atom.
Descriptors: Science Instruction, Molecular Structure, Physics, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen – Journal of Chemical Education, 2014
A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…
Descriptors: Science Instruction, College Science, Undergraduate Study, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Lolur, Phalgun; Dawes, Richard – Journal of Chemical Education, 2014
Additive manufacturing, commonly known as 3D printing, is gaining popularity in a variety of applications and has recently become routinely available. Today, 3D printing services are not only found in engineering design labs and through online companies, but also in university libraries offering student access. In addition, affordable options for…
Descriptors: Science Instruction, College Science, Undergraduate Study, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Ibanez, Jorge G.; Zavala-Araiza, Daniel; Sotomayor-Martinez Barranco, Biaani; Torres-Perez, Jonatan; Camacho-Zuniga, Claudia; Bohrmann-Linde, Claudia; Tausch, Michael W. – Journal of Chemical Education, 2013
Paired (simultaneous) electrochemical processes can increase energy savings in selected cases by using the reactions at both electrodes of an electrochemical cell to perform a desired process, as is the case in the commercially successful chlor-alkali process. In the demonstration described herein, simultaneous blue electrochemiluminescence (ECL)…
Descriptors: Science Instruction, College Science, Undergraduate Study, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Haglund, Jesper; Andersson, Staffan; Elmgren, Maja – Chemistry Education Research and Practice, 2015
Thermodynamics, and in particular entropy, has been found to be challenging for students, not least due to its abstract character. Comparisons with more familiar and concrete domains, by means of analogy and metaphor, are commonly used in thermodynamics teaching, in particular the metaphor "entropy is disorder." However, this particular…
Descriptors: Thermodynamics, Scientific Concepts, Chemical Engineering, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Becker, Nicole M.; Cooper, Melanie M. – Journal of Research in Science Teaching, 2014
Understanding the energy changes that occur as atoms and molecules interact forms the foundation for understanding the macroscopic energy changes that accompany chemical processes. In order to identify ways to scaffold students' understanding of the connections between atomic-molecular and macroscopic energy perspectives, we conducted a…
Descriptors: Science Instruction, College Science, Energy, Molecular Structure
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Riggs, Peter J. – European Journal of Physics Education, 2013
Students often wrestle unsuccessfully with the task of correctly calculating momentum probability densities and have difficulty in understanding their interpretation. In the case of a particle in an "infinite" potential well, its momentum can take values that are not just those corresponding to the particle's quantised energies but…
Descriptors: Science Instruction, Scientific Concepts, Computation, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Castet, Frédéric; Méreau, Raphaël; Liotard, Daniel – Journal of Chemical Education, 2014
In this computational experiment, students use advanced quantum chemistry tools to simulate the photochromic reaction mechanism in naphthopyran derivatives. The first part aims to make students familiar with excited-state reaction mechanisms and addresses the photoisomerization of the benzopyran molecule by means of semiempirical quantum chemical…
Descriptors: Science Instruction, College Science, Chemistry, Undergraduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Teplukhin, Alexander; Babikov, Dmitri – Journal of Chemical Education, 2015
In our three-dimensional world, one can plot, see, and comprehend a function of two variables at most, V(x,y). One cannot plot a function of three or more variables. For this reason, visualization of the potential energy function in its full dimensionality is impossible even for the smallest polyatomic molecules, such as triatomics. This creates…
Descriptors: Science Instruction, Visualization, Energy, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Pieraccini, M.; Selleri, S. – Physics Education, 2013
Catt's anomaly is a sort of "thought experiment" (a "gedankenexperiment") where electrons seem to travel at the speed of light. Although its author argued with conviction for many years, it has a clear and satisfactory solution and it can be considered indubitably just an apparent paradox. Nevertheless, it is curious and…
Descriptors: Science Instruction, Physics, Science Experiments, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Redzic, Dragan V. – European Journal of Physics, 2012
Charges and fields in a straight, infinite, cylindrical wire carrying a steady current are determined in the rest frames of ions and electrons, starting from the standard assumption that the net charge per unit length is zero in the lattice frame and taking into account a self-induced pinch effect. The analysis presented illustrates the mutual…
Descriptors: Scientific Concepts, Science Instruction, Physics, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Bandyopadhyay, Subhajit; Roy, Saswata – Journal of Chemical Education, 2014
This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…
Descriptors: Science Experiments, Spectroscopy, Science Instruction, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Sweeney, William; Lee, James; Abid, Nauman; DeMeo, Stephen – Journal of Chemical Education, 2014
An experiment is described that determines the activation energy (E[subscript a]) of the iodide-catalyzed decomposition reaction of hydrogen peroxide in a much more efficient manner than previously reported in the literature. Hydrogen peroxide, spontaneously or with a catalyst, decomposes to oxygen and water. Because the decomposition reaction is…
Descriptors: Science Instruction, Science Experiments, Energy, Scientific Principles
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  16