NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jamshidi, Laleh; Declercq, Lies; Fernández-Castilla, Belén; Ferron, John M.; Moeyaert, Mariola; Beretvas, S. Natasha; Van den Noortgate, Wim – Journal of Experimental Education, 2021
Previous research found bias in the estimate of the overall fixed effects and variance components using multilevel meta-analyses of standardized single-case data. Therefore, we evaluate two adjustments in an attempt to reduce the bias and improve the statistical properties of the parameter estimates. The results confirm the existence of bias when…
Descriptors: Statistical Bias, Multivariate Analysis, Meta Analysis, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Fernández-Castilla, Belén; Declercq, Lies; Jamshidi, Laleh; Beretvas, S. Natasha; Onghena, Patrick; Van den Noortgate, Wim – Journal of Experimental Education, 2021
This study explores the performance of classical methods for detecting publication bias--namely, Egger's regression test, Funnel Plot test, Begg's Rank Correlation and Trim and Fill method--in meta-analysis of studies that report multiple effects. Publication bias, outcome reporting bias, and a combination of these were generated. Egger's…
Descriptors: Statistical Bias, Meta Analysis, Publications, Regression (Statistics)
Declercq, Lies; Jamshidi, Laleh; Fernández-Castilla, Belen; Moeyaert, Mariola; Natasha, Beretvas S.; Ferron, John M.; Van den Noortgate, Wim – Grantee Submission, 2020
To conduct a multilevel meta-analysis of multiple single-case experimental design (SCED) studies, the individual participant data (IPD) can be analyzed in one or two stages. In the one-stage approach, a multilevel model is estimated based on the raw data. In the two-stage approach, an effect size is calculated for each participant and these effect…
Descriptors: Research Design, Data Analysis, Effect Size, Models
Jamshidi, Laleh; Declercq, Lies; Fernández-Castilla, Belén; Ferron, John M.; Moeyaert, Mariola; Beretvas, S. Natasha; Van den Noortgate, Wim – Grantee Submission, 2020
The focus of the current study is on handling the dependence among multiple regression coefficients representing the treatment effects when meta-analyzing data from single-case experimental studies. We compare the results when applying three different multilevel meta-analytic models (i.e., a univariate multilevel model avoiding the dependence, a…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Meta Analysis, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Jamshidi, Laleh; Heyvaert, Mieke; Van den Noortgate, Wim – AERA Online Paper Repository, 2017
Based on the increasing interest in systematic reviews and meta-analyses of Single-Subject Experimental Designs (SSEDs), the aim of the present review is to determine the general characteristics of these meta-analyses, including design characteristics of the primary studies and the meta-analyses, the kind of data, and the kind of analysis. After a…
Descriptors: Research Design, Experiments, Effect Size, Meta Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Rubio-Aparicio, María; López-López, José Antonio; Sánchez-Meca, Julio; Marín-Martínez, Fulgencio; Viechtbauer, Wolfgang; Van den Noortgate, Wim – Research Synthesis Methods, 2018
The random-effects model, applied in most meta-analyses nowadays, typically assumes normality of the distribution of the effect parameters. The purpose of this study was to examine the performance of various random-effects methods (standard method, Hartung's method, profile likelihood method, and bootstrapping) for computing an average effect size…
Descriptors: Effect Size, Meta Analysis, Intervals, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Moeyaert, Mariola; Ugille, Maaike; Natasha Beretvas, S.; Ferron, John; Bunuan, Rommel; Van den Noortgate, Wim – International Journal of Social Research Methodology, 2017
This study investigates three methods to handle dependency among effect size estimates in meta-analysis arising from studies reporting multiple outcome measures taken on the same sample. The three-level approach is compared with the method of robust variance estimation, and with averaging effects within studies. A simulation study is performed,…
Descriptors: Meta Analysis, Effect Size, Robustness (Statistics), Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
López-López, José Antonio; Van den Noortgate, Wim; Tanner-Smith, Emily E.; Wilson, Sandra Jo; Lipsey, Mark W. – Research Synthesis Methods, 2017
Dependent effect sizes are ubiquitous in meta-analysis. Using Monte Carlo simulation, we compared the performance of 2 methods for meta-regression with dependent effect sizes--robust variance estimation (RVE) and 3-level modeling--with the standard meta-analytic method for independent effect sizes. We further compared bias-reduced linearization…
Descriptors: Effect Size, Regression (Statistics), Meta Analysis, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Moeyaert, Mariola; Ugille, Maaike; Ferron, John M.; Onghena, Patrick; Heyvaert, Mieke; Beretvas, S. Natasha; Van den Noortgate, Wim – School Psychology Quarterly, 2015
The purpose of this study is to illustrate the multilevel meta-analysis of results from single-subject experimental designs of different types, including AB phase designs, multiple-baseline designs, ABAB reversal designs, and alternating treatment designs. Current methodological work on the meta-analysis of single-subject experimental designs…
Descriptors: Intervention, Multivariate Analysis, Meta Analysis, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Ugille, Maaike; Moeyaert, Mariola; Beretvas, S. Natasha; Ferron, John M.; Van den Noortgate, Wim – Journal of Experimental Education, 2014
A multilevel meta-analysis can combine the results of several single-subject experimental design studies. However, the estimated effects are biased if the effect sizes are standardized and the number of measurement occasions is small. In this study, the authors investigated 4 approaches to correct for this bias. First, the standardized effect…
Descriptors: Effect Size, Statistical Bias, Sample Size, Regression (Statistics)
Van den Noortgate, Wim; Moeyaert, Mariola; Ugille, Maaike; Beretvas, Tasha; Ferron, John – Society for Research on Educational Effectiveness, 2012
The purpose of the study is to investigate empirically the multilevel approach for combining single-case or single-subject experimental designs (SSED) data. More specifically, the authors aim at assessing the value of the approach for numbers of observations, cases and studies that are common in SSED research, by looking at the bias and precision…
Descriptors: Computation, Inferences, Research Design, Outcomes of Education