NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1414146
Record Type: Journal
Publication Date: 2024
Pages: 11
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1055-3096
EISSN: EISSN-2574-3872
Available Date: N/A
Teaching Tip: Using No-Code AI to Teach Machine Learning in Higher Education
Leif Sundberg; Jonny Holmström
Journal of Information Systems Education, v35 n1 p56-66 2024
With recent advances in artificial intelligence (AI), machine learning (ML) has been identified as particularly useful for organizations seeking to create value from data. However, as ML is commonly associated with technical professions, such as computer science and engineering, incorporating training in the use of ML into non-technical educational programs, such as social sciences courses, is challenging. Here, we present an approach to address this challenge by using no-code AI in a course for university students with diverse educational backgrounds. This approach was tested in an empirical, case-based educational setting, in which students engaged in data collection and trained ML models using a no-code AI platform. In addition, a framework consisting of five principles of instruction (problem-centered learning, activation, demonstration, application, and integration) was applied. This paper contributes to the literature on IS education by providing information for instructors on how to incorporate no-code AI in their courses and insights into the benefits and challenges of using no-code AI tools to support the ML workflow in educational settings.
Journal of Information Systems Education. e-mail: editor@jise.org; Web site: http://www.jise.org
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A