NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Zhai, Xiaoming; He, Peng; Krajcik, Joseph – Journal of Research in Science Teaching, 2022
Involving students in scientific modeling practice is one of the most effective approaches to achieving the next generation science education learning goals. Given the complexity and multirepresentational features of scientific models, scoring student-developed models is time- and cost-intensive, remaining one of the most challenging assessment…
Descriptors: Artificial Intelligence, Science Education, Models, Middle School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Brandon J. Yik; David G. Schreurs; Jeffrey R. Raker – Journal of Chemical Education, 2023
Acid-base chemistry, and in particular the Lewis acid-base model, is foundational to understanding mechanistic ideas. This is due to the similarity in language chemists use to describe Lewis acid-base reactions and nucleophile-electrophile interactions. The development of artificial intelligence and machine learning technologies has led to the…
Descriptors: Educational Technology, Formative Evaluation, Molecular Structure, Models
Murphy, Robert F. – RAND Corporation, 2019
Recent applications of artificial intelligence (AI) have been successful in performing complex tasks in health care, financial markets, manufacturing, and transportation logistics, but the influence of AI applications in the education sphere has been limited. However, that may be changing. In this paper, the author discusses several ways that AI…
Descriptors: Elementary Secondary Education, Artificial Intelligence, Teaching Methods, Educational Technology
Office of Educational Technology, US Department of Education, 2023
The U.S. Department of Education (Department) is committed to supporting the use of technology to improve teaching and learning and to support innovation throughout educational systems. This report addresses the clear need for sharing knowledge and developing policies for "Artificial Intelligence," a rapidly advancing class of…
Descriptors: Artificial Intelligence, Educational Technology, Technology Uses in Education, Educational Policy
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Feng, Mingyu, Ed.; Käser, Tanja, Ed.; Talukdar, Partha, Ed. – International Educational Data Mining Society, 2023
The Indian Institute of Science is proud to host the fully in-person sixteenth iteration of the International Conference on Educational Data Mining (EDM) during July 11-14, 2023. EDM is the annual flagship conference of the International Educational Data Mining Society. The theme of this year's conference is "Educational data mining for…
Descriptors: Information Retrieval, Data Analysis, Computer Assisted Testing, Cheating
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Hui-Yu; Chen, Shyi-Ming – Educational Technology & Society, 2007
In this paper, we present two new methods for evaluating students' answerscripts based on the similarity measure between vague sets. The vague marks awarded to the answers in the students' answerscripts are represented by vague sets, where each element u[subscript i] in the universe of discourse U belonging to a vague set is represented by a…
Descriptors: Artificial Intelligence, Student Evaluation, Evaluation Methods, Educational Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Barnes, Tiffany, Ed.; Chi, Min, Ed.; Feng, Mingyu, Ed. – International Educational Data Mining Society, 2016
The 9th International Conference on Educational Data Mining (EDM 2016) is held under the auspices of the International Educational Data Mining Society at the Sheraton Raleigh Hotel, in downtown Raleigh, North Carolina, in the USA. The conference, held June 29-July 2, 2016, follows the eight previous editions (Madrid 2015, London 2014, Memphis…
Descriptors: Data Analysis, Evidence Based Practice, Inquiry, Science Instruction