NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Graham, James M.; Guthrie, Abbie C.; Thompson, Bruce – Structural Equation Modeling: A Multidisciplinary Journal, 2003
Confirmatory factor analysis (CFA) is a statistical procedure frequently used to test the fit of data to measurement models. Published CFA studies typically report factor pattern coefficients. Few reports, however, also present factor structure coefficients, which can be essential for the accurate interpretation of CFA results. The interpretation…
Descriptors: Factor Analysis, Factor Structure, Data Interpretation
Peer reviewed Peer reviewed
Direct linkDirect link
Vacha-Haase, Tammi; Thompson, Bruce – Journal of Counseling Psychology, 2004
The present article presents a tutorial on how to estimate and interpret various effect sizes. The 5th edition of the Publication Manual of the American Psychological Association (2001) described the failure to report effect sizes as a "defect" (p. 5), and 23 journals have published author guidelines requiring effect size reporting. Although…
Descriptors: Effect Size, Research Methodology, Computation, Data Interpretation
Peer reviewed Peer reviewed
Vacha-Haase, Tammi; Thompson, Bruce – Measurement and Evaluation in Counseling and Development, 1998
Responds to Biskin's comments (this issue) on the significance test controversy. Highlights areas of agreement (importance of replication evidence, importance of effect sizes) and disagreement (influence of sample size, evaluation of populations vs. samples, significance of Carver's article). Includes further recommendations for reporting research…
Descriptors: Data Interpretation, Hypothesis Testing, Psychological Studies, Sampling
Thompson, Bruce; And Others – 1991
Problems with using stepwise analytic methods are discussed, and better alternatives are illustrated. To make the illustrations concrete, an actual data set, involving responses of 91 medical school admissions directors to 30 variables, was used. The 30 variables involved perceptions of barriers to medical school with respect to characteristics of…
Descriptors: Admissions Officers, Data Interpretation, Effect Size, Higher Education
Thompson, Bruce – 1994
Too few researchers understand what statistical significance testing does and does not do, and consequently their results are misinterpreted. This Digest explains the concept of statistical significance testing and discusses the meaning of probabilities, the concept of statistical significance, arguments against significance testing,…
Descriptors: Data Analysis, Data Interpretation, Decision Making, Effect Size
Thompson, Bruce – 1987
This paper evaluates the logic underlying various criticisms of statistical significance testing and makes specific recommendations for scientific and editorial practice that might better increase the knowledge base. Reliance on the traditional hypothesis testing model has led to a major bias against nonsignificant results and to misinterpretation…
Descriptors: Analysis of Variance, Data Interpretation, Editors, Effect Size