ERIC Number: EJ1435250
Record Type: Journal
Publication Date: 2024
Pages: 18
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1049-4820
EISSN: EISSN-1744-5191
Available Date: N/A
Automated Short Answer Grading with Computer-Assisted Grading Example Acquisition Based on Active Learning
Andrew Kwok-Fai Lui; Sin-Chun Ng; Stella Wing-Nga Cheung
Interactive Learning Environments, v32 n5 p2087-2104 2024
The technology of automated short answer grading (ASAG) can efficiently process answers according to human-prepared grading examples. Computer-assisted acquisition of grading examples uses a computer algorithm to sample real student responses for potentially good examples. The process is critical for optimizing the grading accuracy of machine learning models given a budget of human effort and the appeal of ASAG to online learning providers. This paper presents a novel method called short answer grading with active learning (SAGAL) that features a unified formulation comprising the heuristics for identifying potentially optimal examples of representative answers, borderline answers, and anomalous answers. The method is based on active learning, which iteratively samples good examples and queries for annotation to increase the sampling accuracy. SAGAL has been evaluated with three different public datasets of distinctive characteristics. The results show that the resulting models generally outperform the baseline semi-supervised learning methods on the same number of grading examples.
Descriptors: Grading, Computer Uses in Education, Educational Technology, Artificial Intelligence, Algorithms, Computer Software, Heuristics
Routledge. Available from: Taylor & Francis, Ltd. 530 Walnut Street Suite 850, Philadelphia, PA 19106. Tel: 800-354-1420; Tel: 215-625-8900; Fax: 215-207-0050; Web site: http://www.tandf.co.uk/journals
Publication Type: Journal Articles; Reports - Descriptive
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A