NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 16 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Dewi Ayu Kencana Ungu; Mihye Won; David F. Treagust; Mauro Mocerino; Henry Matovu; Chin-Chung Tsai; Roy Tasker – Journal of Chemical Education, 2023
Magnetic molecular models help students explore molecular structures and interactions. In this study, we investigated how pairs of students used magnetic models to explore hydrogen bonding and the 6-fold symmetry of snowflakes. Fourteen first-year students enrolled in a chemistry unit participated in pairs. Students' interactions with the magnetic…
Descriptors: College Freshmen, Science Instruction, Molecular Structure, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Natoli, Sean N.; McMillin, David R. – Journal of Chemical Education, 2018
Students collect magnetic susceptibility data to verify that Hund's rule correctly predicts electronic configurations. Systems examined include three commercially available lanthanide(III)-containing complexes of the form M(acac)[subscript 3](H[subscript 2]O)[subscript 2] (where M = La(III), Nd(III), and Gd(III), and acac denotes the [CH[subscript…
Descriptors: Science Instruction, Magnets, College Science, Undergraduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Yakubu, Abdallah; Suzuki, Takayoshi; Kita, Masakazu – Journal of Chemical Education, 2017
This paper describes the development of a simple magnetic circular dichroism (MCD) apparatus from a wood base and neodymium magnets and its configuration in the Faraday alignment. The applicability and effectiveness of the apparatus for MCD spectra measurements have been examined. The apparatus was used by undergraduate students to conduct MCD…
Descriptors: Magnets, Material Development, Science Equipment, Spectroscopy
Peer reviewed Peer reviewed
Direct linkDirect link
Pollock, David W.; Truong, Giovanna T.; Bonjour, Jessica L.; Frost, John A. – Journal of Chemical Education, 2018
Solubility is frequently introduced at the high school and introductory college levels through the symbolic domain using net ionic equations and solubility product constants. Students may become proficient with spectator ion cancellation and skilled with algorithmic mathematical applications of solubility without obtaining a deeper understanding…
Descriptors: Spectroscopy, Chemistry, Data Collection, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Ryan, Sheila; Herrington, Deborah G. – Journal of Chemical Education, 2014
Understanding what happens at the particulate level when ionic compounds dissolve in water is difficult for many students, yet this understanding is critical in explaining many macroscopic observations. This article describes a student-centered activity designed to help strengthen students' conceptual understanding of this process at the…
Descriptors: Chemistry, Science Activities, Science Instruction, Magnets
Peer reviewed Peer reviewed
Direct linkDirect link
Furlan, Ping Y.; Melcer, Michael E. – Journal of Chemical Education, 2014
A general chemistry laboratory experiment using readily available chemicals is described to introduce college students to an exciting class of nanocomposite materials. In a one-step room temperature synthetic process, magnetite nanoparticles are embedded onto activated carbon matrix. The resultant nanocomposite has been shown to combine the…
Descriptors: Science Instruction, Water Pollution, Science Experiments, Secondary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Boohan, Richard – School Science Review, 2011
Over the last few decades, smart materials have become increasingly important in the design of products. Essentially, a smart material is one that has been designed to respond to a stimulus, such as a change in temperature or magnetic field, in a particular and useful way. This article looks at a range of smart materials that are relatively…
Descriptors: Technology, Stimuli, Heat, Mechanics (Physics)
Peer reviewed Peer reviewed
Direct linkDirect link
Pappenfus, Ted M.; Schliep, Karl B.; Dissanayake, Anudaththa; Ludden, Trevor; Nieto-Ortega, Belen; Lopez Navarrete, Juan T.; Ruiz Delgado, M. Carmen; Casado, Juan – Journal of Chemical Education, 2012
A series of experiments for undergraduate courses (e.g., organic, physical) have been developed in the area of small molecule organic materials. These experiments focus on understanding the electronic and redox properties of a donor-acceptor molecule that is prepared in a convenient one-step microscale reaction. The resulting intensely colored…
Descriptors: Chemistry, Science Instruction, College Science, Undergraduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Flener-Lovitt, Charity – Journal of Chemical Education, 2014
A thematic course called "Climate Change: Chemistry and Controversy" was developed for upper-level non-STEM students. This course used the socioscientific context of climate change to teach chemical principles and the nature of science. Students used principles of agnotology (direct study of misinformation) to debunk climate change…
Descriptors: Science Instruction, College Science, Undergraduate Study, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Adelhelm, Manfred; Aristov, Natasha; Habekost, Achim – Journal of Chemical Education, 2010
The physical properties of oxygen, in particular, the blue color of the liquid phase, the red glow of its chemiluminescence, and its paramagnetism as shown by the entrapment or deflection of liquid oxygen by a magnetic field, can be investigated in a regular school setting with hand-held spectrophotometers and digital cameras. In college-level…
Descriptors: Chemistry, Science Instruction, Instrumentation, Demonstrations (Educational)
Peer reviewed Peer reviewed
Direct linkDirect link
Sojka, Zbigniew; Che, Michel – Journal of Chemical Education, 2008
Laboratory and practical courses, where students become familiar with experimental techniques and learn to interpret data and relate them to appropriate theory, play a vital role in chemical education. In the large panoply of currently available techniques, it is difficult to find a rational and easy way to classify the techniques in relation to…
Descriptors: Chemistry, Science Experiments, Laboratory Experiments, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Huggins, Michael T.; Billimoria, Freida – Journal of Chemical Education, 2007
The stereochemical features of molecules can have far reaching effects in many areas of science including medicinal chemistry, materials chemistry, and supramolecular chemistry. There have been many techniques developed over the years to determine the absolute configuration of alkenes: the R,S configuration of chiral centers and the most stable…
Descriptors: Spectroscopy, Chemistry, Laboratory Experiments, Science Experiments
Peer reviewed Peer reviewed
Cortel, Adolf – Journal of Chemical Education, 1998
A paramagnetic substance is attracted by a magnetic field with a force proportional to its magnetic susceptibility which is related to the number of unpaired electrons in the atoms. Data are used to establish oxidation states and bonding properties. Describes a simple setup to demonstrate the paramagnetism of common inorganic compounds. (DKM)
Descriptors: Chemical Bonding, Chemistry, Demonstrations (Science), Higher Education
Peer reviewed Peer reviewed
Burr, Robert E. – Science Teacher, 1975
Descriptors: Audiovisual Aids, Chemistry, Demonstrations (Educational), Instructional Materials
Peer reviewed Peer reviewed
Gilbert, George L., Ed. – Journal of Chemical Education, 1989
Discusses three broad classes of magnetic behavior: diamagnetic, paramagnetic, and ferromagnetic. Presents a simple lecture demonstration using an overhead projector to synthesize triiron tetraoxide and to show its interaction with a magnetic field and comparing it to a paramagnetic material. (MVL)
Descriptors: Chemical Bonding, Chemical Reactions, Chemistry, College Science
Previous Page | Next Page ยป
Pages: 1  |  2