ERIC Number: EJ997618
Record Type: Journal
Publication Date: 2013-Apr
Pages: 3
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0033-3123
EISSN: N/A
Modeling fMRI Data: Challenges and Opportunities
Maydeu-Olivares, Alberto; Brown, Gregory
Psychometrika, v78 n2 p240-242 Apr 2013
We offer an introduction to the five papers that make up this special section. These papers deal with a range of the methodological challenges that face researchers analyzing fMRI data--the spatial, multilevel, and longitudinal nature of the data, the sources of noise, and so on. The papers all provide analyses of data collected by a multi-site consortium, the Function Biomedical Informatics Research Network. Due to the sheer volume of data, univariate procedures are often applied, which leads to a multiple comparisons problem (since the data are necessarily multivariate). The papers in this section include interesting applications, such as a state-space model applied to these data, and conclude with a reflection on basic measurement problems in fMRI. All in all, they provide a good overview of the challenges that fMRI data present to the standard psychometric toolbox, but also to the opportunities they offer for new psychometric modeling.
Descriptors: Data Analysis, Measurement, Brain, Diagnostic Tests, Research Problems, Models, Statistical Analysis
Springer. 233 Spring Street, New York, NY 10013. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-348-4505; e-mail: service-ny@springer.com; Web site: http://bibliotheek.ehb.be:2189
Publication Type: Journal Articles; Reports - Descriptive
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A