NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
ERIC Number: ED657138
Record Type: Non-Journal
Publication Date: 2024
Pages: 98
Abstractor: As Provided
ISBN: 979-8-3827-7996-6
ISSN: N/A
EISSN: N/A
On New and Improved Measures for Item Analysis from Signal Detection Theory
Rachel Lee
ProQuest LLC, Ph.D. Dissertation, Columbia University
Classical item analysis (CIA) entails summarizing items based on two key attributes: item difficulty and item discrimination, defined as the proportion of examinees answering correctly and the difference in correctness between high and low scorers. Recent insights reveal a direct link between these measures and aspects of signal detection theory (SDT) in item analysis, offering modifications to traditional metrics and introducing new ones to identify problematic items (DeCarlo, 2023). The SDT approach involves extending Luce's choice model (1959) using a mixture framework, with mixing occurring within examinees rather than across them, reflecting varying latent knowledge states (know or don't know) across items. This implies a 'true' split (know/don't know) enabling straightforward discrimination and difficulty measures, lending theoretical support to the conventional item splitting approach. DeCarlo (2023) demonstrated improved measures and item screening using simple median splits, motivating this study to explore enhanced measures via refined splits. This study builds on these findings, refining CIA and SDT measures by integrating additional information like response time and item scores using latent class and cluster models. [The dissertation citations contained here are published with the permission of ProQuest LLC. Further reproduction is prohibited without permission. Copies of dissertations may be obtained by Telephone (800) 1-800-521-0600. Web page: http://bibliotheek.ehb.be:2222/en-US/products/dissertations/individuals.shtml.]
ProQuest LLC. 789 East Eisenhower Parkway, P.O. Box 1346, Ann Arbor, MI 48106. Tel: 800-521-0600; Web site: http://bibliotheek.ehb.be:2222/en-US/products/dissertations/individuals.shtml
Publication Type: Dissertations/Theses - Doctoral Dissertations
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A