NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 39 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Goto, Jun-Ichi; Fujii, Satoshi; Fujiwara, Hiroki; Mikoshiba, Katsuhiko; Yamazaki, Yoshihiko – Learning & Memory, 2022
In hippocampal CA1 neurons of wild-type mice, a short tetanus (15 or 20 pulses at 100 Hz) or a standard tetanus (100 pulses at 100 Hz) to a naive input pathway induces long-term potentiation (LTP) of the responses. Low-frequency stimulation (LFS; 1000 pulses at 1 Hz) 60 min after the standard tetanus reverses LTP (depotentiation [DP]), while LFS…
Descriptors: Animals, Brain Hemisphere Functions, Stimuli, Neurology
Peer reviewed Peer reviewed
Direct linkDirect link
Farah, Carole A.; Hastings, Margaret H.; Dunn, Tyler W.; Gong, Katrina; Baker-Andresen, Danay; Sossin, Wayne S. – Learning & Memory, 2017
Atypical PKM, a persistently active form of atypical PKC, is proposed to be a molecular memory trace, but there have been few examinations of the role of PKMs generated from other PKCs. We demonstrate that inhibitors used to inhibit PKMs generated from atypical PKCs are also effective inhibitors of other PKMs. In contrast, we demonstrate that…
Descriptors: Memory, Brain, Neurological Organization, Neurology
Peer reviewed Peer reviewed
Direct linkDirect link
Fujii, Satoshi; Yamazaki, Yoshihiko; Goto, Jun-Ichi; Fujiwara, Hiroki; Mikoshiba, Katsuhiko – Learning & Memory, 2016
We investigated the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) activated by preconditioning low-frequency afferent stimulation (LFS) in the subsequent induction of long-term potentiation (LTP) in CA1 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential or the population…
Descriptors: Conditioning, Stimulation, Neurological Organization, Brain Hemisphere Functions
Peer reviewed Peer reviewed
Direct linkDirect link
Perusini, Jennifer N.; Fanselow, Michael S. – Learning & Memory, 2015
In this review, we discuss the usefulness of the distinction between fear and anxiety. The clinical use of the labels is ambiguous, often defining one in terms of the other. We first consider what a useful, objective, and scientifically valid definition would entail and then evaluate several fear/anxiety distinctions that have been made in the…
Descriptors: Neurological Organization, Fear, Anxiety, Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
le Feber, Joost; Witteveen, Tim; van Veenendaal, Tamar M.; Dijkstra, Jelle – Learning & Memory, 2015
During systems consolidation, memories are spontaneously replayed favoring information transfer from hippocampus to neocortex. However, at present no empirically supported mechanism to accomplish a transfer of memory from hippocampal to extra-hippocampal sites has been offered. We used cultured neuronal networks on multielectrode arrays and…
Descriptors: Memory, Brain Hemisphere Functions, Neurological Organization, Networks
Peer reviewed Peer reviewed
Direct linkDirect link
Mason, Maria J.; Watkins, Amanda J.; Wakabayashi, Jordann; Buechler, Jennifer; Pepino, Christine; Brown, Michelle; Wright, William G. – Learning & Memory, 2014
Previous research on sensitization in "Aplysia" was based entirely on unnatural noxious stimuli, usually electric shock, until our laboratory found that a natural noxious stimulus, a single sublethal lobster attack, causes short-term sensitization. We here extend that finding by demonstrating that multiple lobster attacks induce…
Descriptors: Stimuli, Animals, Neurological Organization, Responses
Peer reviewed Peer reviewed
Direct linkDirect link
Vernon, Jeffrey; Irvine, Elaine E.; Peters, Marco; Jeyabalan, Jeshmi; Giese, K. Peter – Learning & Memory, 2016
Phosphorylation is a ubiquitous post-translational modification of proteins, and a known physiological regulator of K[superscript +] channel function. Phosphorylation of K[superscript +] channels by kinases has long been presumed to regulate neuronal processing and behavior. Although circumstantial evidence has accumulated from behavioral studies…
Descriptors: Physiology, Neurological Organization, Cognitive Processes, Genetics
Peer reviewed Peer reviewed
Direct linkDirect link
Novitskaya, Yulia; Sara, Susan J.; Logothetis, Nikos K.; Eschenko, Oxana – Learning & Memory, 2016
Experience-induced replay of neuronal ensembles occurs during hippocampal high-frequency oscillations, or ripples. Post-learning increase in ripple rate is predictive of memory recall, while ripple disruption impairs learning. Ripples may thus present a fundamental component of a neurophysiological mechanism of memory consolidation. In addition to…
Descriptors: Brain Hemisphere Functions, Memory, Recall (Psychology), Interference (Learning)
Peer reviewed Peer reviewed
Direct linkDirect link
Cicchese, Joseph J.; Darling, Ryan D.; Berry, Stephen D. – Learning & Memory, 2015
Eyeblink conditioning given in the explicit presence of hippocampal ? results in accelerated learning and enhanced multiple-unit responses, with slower learning and suppression of unit activity under non-? conditions. Recordings from putative pyramidal cells during ?-contingent training show that pretrial ?-state is linked to the probability of…
Descriptors: Animals, Research, Brain Hemisphere Functions, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Villers, Agnès; Giese, Karl Peter; Ris, Lauerence – Learning & Memory, 2014
a-calcium/calmodulin-dependent protein kinase (aCaMKII) T286-autophosphorylation provides a short-term molecular memory that was thought to be required for LTP and for learning and memory. However, it has been shown that learning can occur in aCaMKII-T286A mutant mice after a massed training protocol. This raises the question of whether there…
Descriptors: Memory, Animals, Brain Hemisphere Functions, Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Pu, Lu; Kopec, Ashley M.; Boyle, Heather D.; Carew, Thomas J. – Learning & Memory, 2014
Neurotrophins are critically involved in developmental processes such as neuronal cell survival, growth, and differentiation, as well as in adult synaptic plasticity contributing to learning and memory. Our previous studies examining neurotrophins and memory formation in "Aplysia" showed that a TrkB ligand is required for MAPK…
Descriptors: Brain, Memory, Learning Processes, Neurological Organization
Peer reviewed Peer reviewed
Direct linkDirect link
Jalil, Sajiya J.; Sacktor, Todd Charlton; Shouval, Harel Z. – Learning & Memory, 2015
Memories that last a lifetime are thought to be stored, at least in part, as persistent enhancement of the strength of particular synapses. The synaptic mechanism of these persistent changes, late long-term potentiation (L-LTP), depends on the state and number of specific synaptic proteins. Synaptic proteins, however, have limited dwell times due…
Descriptors: Long Term Memory, Brain Hemisphere Functions, Neurological Organization, Maintenance
Peer reviewed Peer reviewed
Direct linkDirect link
Silva, Alcino J.; Müller, Klaus-Robert – Learning & Memory, 2015
The sheer volume and complexity of publications in the biological sciences are straining traditional approaches to research planning. Nowhere is this problem more serious than in molecular and cellular cognition, since in this neuroscience field, researchers routinely use approaches and information from a variety of areas in neuroscience and other…
Descriptors: Molecular Biology, Molecular Structure, Neurosciences, Neurology
Peer reviewed Peer reviewed
Direct linkDirect link
Drew, Liam J.; Fusi, Stefano; Hen, René – Learning & Memory, 2013
In the adult mammalian brain, newly generated neurons are continuously incorporated into two networks: interneurons born in the subventricular zone migrate to the olfactory bulb, whereas the dentate gyrus (DG) of the hippocampus integrates locally born principal neurons. That the rest of the mammalian brain loses significant neurogenic capacity…
Descriptors: Brain Hemisphere Functions, Adults, Neurological Organization, Olfactory Perception
Peer reviewed Peer reviewed
Direct linkDirect link
Pressler, R. Todd; Rozman, Peter A.; Strowbridge, Ben W. – Learning & Memory, 2013
In the mammalian olfactory bulb (OB), local synaptic circuits modulate the evolving pattern of activity in mitral and tufted cells following olfactory sensory stimulation. GABAergic granule cells, the most numerous interneuron subtype in this brain region, have been extensively studied. However, classic studies using Golgi staining methods…
Descriptors: Brain, Olfactory Perception, Stimulation, Stimuli
Previous Page | Next Page »
Pages: 1  |  2  |  3