NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 13 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Esther Ulitzsch; Qiwei He; Steffi Pohl – Grantee Submission, 2024
This is an editorial for a special issue "Innovations in Exploring Sequential Process Data" in the journal Zeitschrift für Psychologie. Process data refer to log files generated by human-computer interactive items. They document the entire process, including keystrokes, mouse clicks as well as the associated time stamps, performed by a…
Descriptors: Educational Innovation, Man Machine Systems, Educational Technology, Computer Assisted Testing
Cai, Zhiqiang; Siebert-Evenstone, Amanda; Eagan, Brendan; Shaffer, David Williamson – Grantee Submission, 2021
When text datasets are very large, manually coding line by line becomes impractical. As a result, researchers sometimes try to use machine learning algorithms to automatically code text data. One of the most popular algorithms is topic modeling. For a given text dataset, a topic model provides probability distributions of words for a set of…
Descriptors: Coding, Artificial Intelligence, Models, Probability
Peer reviewed Peer reviewed
Ha Tien Nguyen; Conrad Borchers; Meng Xia; Vincent Aleven – Grantee Submission, 2024
Intelligent tutoring systems (ITS) can help students learn successfully, yet little work has explored the role of caregivers in shaping that success. Past interventions to support caregivers in supporting their child's homework have been largely disjunct from educational technology. The paper presents prototyping design research with nine middle…
Descriptors: Middle School Mathematics, Intelligent Tutoring Systems, Caregivers, Caregiver Attitudes
Jionghao Lin; Shaveen Singh; Lela Sha; Wei Tan; David Lang; Dragan Gasevic; Guanliang Chen – Grantee Submission, 2022
To construct dialogue-based Intelligent Tutoring Systems (ITS) with sufficient pedagogical expertise, a trendy research method is to mine large-scale data collected by existing dialogue-based ITS or generated between human tutors and students to discover effective tutoring strategies. However, most of the existing research has mainly focused on…
Descriptors: Intelligent Tutoring Systems, Teaching Methods, Dialogs (Language), Man Machine Systems
Lippert, Anne; Shubeck, Keith; Morgan, Brent; Hampton, Andrew; Graesser, Arthur – Grantee Submission, 2020
This article describes designs that use multiple conversational agents within the framework of intelligent tutoring systems. Agents in this case are computerized talking heads or embodied animated avatars that help students learn by performing actions and holding conversations with them in natural language. The earliest conversational intelligent…
Descriptors: Intelligent Tutoring Systems, Man Machine Systems, Natural Language Processing, Educational Technology
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2020
For decades, educators have relied on readability metrics that tend to oversimplify dimensions of text difficulty. This study examines the potential of applying advanced artificial intelligence methods to the educational problem of assessing text difficulty. The combination of hierarchical machine learning and natural language processing (NLP) is…
Descriptors: Natural Language Processing, Artificial Intelligence, Man Machine Systems, Classification
Julia Cambre; Chinmay Kulkarni – Grantee Submission, 2019
When a smart device talks, what should its voice sound like? Voice-enabled devices are becoming a ubiquitous presence in our everyday lives. Simultaneously, speech synthesis technology is rapidly improving, making it possible to generate increasingly varied and realistic computerized voices. Despite the flexibility and richness of expression that…
Descriptors: Assistive Technology, Speech Communication, Computer Use, Man Machine Systems
Fesler, Lily; Dee, Thomas; Baker, Rachel; Evans, Brent – Grantee Submission, 2019
Recent advances in computational linguistics and the social sciences have created new opportunities for the education research community to analyze relevant large-scale text data. However, the take-up of these advances in education research is still nascent. In this article, we review the recent automated text methods relevant to educational…
Descriptors: Educational Research, Content Analysis, Research Methodology, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bosch, Nigel; Crues, R. Wes; Shaik, Najmuddin; Paquette, Luc – Grantee Submission, 2020
Online courses often include discussion forums, which provide a rich source of data to better understand and improve students' learning experiences. However, forum messages frequently contain private information that prevents researchers from analyzing these data. We present a method for discovering and redacting private information including…
Descriptors: Privacy, Discussion Groups, Asynchronous Communication, Methods
Danielle S. McNamara; Laura K. Allen; Scott A. Crossley; Mihai Dascalu; Cecile A. Perret – Grantee Submission, 2017
Language is of central importance to the field of education because it is a conduit for communicating and understanding information. Therefore, researchers in the field of learning analytics can benefit from methods developed to analyze language both accurately and efficiently. Natural language processing (NLP) techniques can provide such an…
Descriptors: Natural Language Processing, Learning Analytics, Educational Technology, Automation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Holstein, Kenneth; McLaren, Bruce M.; Aleven, Vincent – Grantee Submission, 2019
As artificial intelligence (AI) increasingly enters K-12 classrooms, what do teachers and students see as the roles of human versus AI instruction, and how might educational AI (AIED) systems best be designed to support these complementary roles? We explore these questions through participatory design and needs validation studies with K12 teachers…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Instructional Design, Elementary Secondary Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jordan, Pamela W.; Albacete, Patricia L.; Katz, Sandra – Grantee Submission, 2015
Tutorial dialogue systems often simulate tactics used by experienced human tutors such as restating students' dialogue input. We investigated whether the amount of tutor restatement that supports student inference interacts with students' incoming knowledge level in predicting how much students learn from a system. We found that students with…
Descriptors: Intelligent Tutoring Systems, Man Machine Systems, Interaction, Student Reaction
Heffernan, Neil T.; Ostrow, Korinn S.; Kelly, Kim; Selent, Douglas; Van Inwegen, Eric G.; Xiong, Xiaolu; Williams, Joseph Jay – Grantee Submission, 2016
Due to substantial scientific and practical progress, learning technologies can effectively adapt to the characteristics and needs of students. This article considers how learning technologies can adapt over time by crowdsourcing contributions from teachers and students -- explanations, feedback, and other pedagogical interactions. Considering the…
Descriptors: Artificial Intelligence, Educational Technology, Student Needs, Electronic Publishing