NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Grantee Submission112
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 61 to 75 of 112 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Selcuk Acar; Denis Dumas; Peter Organisciak; Kelly Berthiaume – Grantee Submission, 2024
Creativity is highly valued in both education and the workforce, but assessing and developing creativity can be difficult without psychometrically robust and affordable tools. The open-ended nature of creativity assessments has made them difficult to score, expensive, often imprecise, and therefore impractical for school- or district-wide use. To…
Descriptors: Thinking Skills, Elementary School Students, Artificial Intelligence, Measurement Techniques
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2020
For decades, educators have relied on readability metrics that tend to oversimplify dimensions of text difficulty. This study examines the potential of applying advanced artificial intelligence methods to the educational problem of assessing text difficulty. The combination of hierarchical machine learning and natural language processing (NLP) is…
Descriptors: Natural Language Processing, Artificial Intelligence, Man Machine Systems, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Robert-Mihai Botarleanu; Micah Watanabe; Mihai Dascalu; Scott A. Crossley; Danielle S. McNamara – Grantee Submission, 2023
Age of Acquisition (AoA) scores approximate the age at which a language speaker fully understands a word's semantic meaning and represent a quantitative measure of the relative difficulty of words in a language. AoA word lists exist across various languages, with English having the most complete lists that capture the largest percentage of the…
Descriptors: Multilingualism, English (Second Language), Second Language Learning, Second Language Instruction
Benjamin D. Nye; Aaron Shiel; Ibrahim Burak Olmez; Anirudh Mittal; Jason Latta; Daniel Auerbach; Yasemin Copur-Gencturk – Grantee Submission, 2021
Despite the critical role of teachers in the educational process, few advanced learning technologies have been developed to support teacher-instruction or professional development. This lack of support is particularly acute for middle school math teachers, where only 37% felt well prepared to scaffold instruction to address the needs of diverse…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Faculty Development, Abstract Reasoning
Daniel Weitekamp III; Erik Harpstead; Kenneth R. Koedinger – Grantee Submission, 2020
Intelligent tutoring systems (ITSs) have consistently been shown to improve the educational outcomes of students when used alone or combined with traditional instruction. However, building an ITS is a time-consuming process which requires specialized knowledge of existing tools. Extant authoring methods, including the Cognitive Tutor Authoring…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Instructional Design, Simulation
Cai, Zhiqiang; Hu, Xiangen; Graesser, Arthur C. – Grantee Submission, 2019
Conversational Intelligent Tutoring Systems (ITSs) are expensive to develop. While simple online courseware could be easily authored by teachers, the authoring of conversational ITSs usually involves a team of experts with different expertise, including domain experts, linguists, instruction designers, programmers, artists, computer scientists,…
Descriptors: Programming, Intelligent Tutoring Systems, Courseware, Educational Technology
Julia Cambre; Ying Liu; Rebecca E. Taylor; Chinmay Kulkarni – Grantee Submission, 2019
This paper investigates whether voice assistants can play a useful role in the specialized work-life of the knowledge worker (in a biology lab). It is motivated both by promising advances in voice-input technology, and a long-standing vision in the community to augment scientific processes with voice-based agents. Through a reflection on our…
Descriptors: Assistive Technology, Artificial Intelligence, Laboratory Equipment, Scientists
Julia Cambre; Chinmay Kulkarni – Grantee Submission, 2019
When a smart device talks, what should its voice sound like? Voice-enabled devices are becoming a ubiquitous presence in our everyday lives. Simultaneously, speech synthesis technology is rapidly improving, making it possible to generate increasingly varied and realistic computerized voices. Despite the flexibility and richness of expression that…
Descriptors: Assistive Technology, Speech Communication, Computer Use, Man Machine Systems
D. S. Messinger; L. K. Perry; S. G. Mitsven; Y. Tao; J. Moffitt; R. M. Fasano; S. A. Custode; C. M. Jerry – Grantee Submission, 2022
Audio-visual recording and location tracking produce enormous quantities of digital data with which researchers can document children's everyday interactions in naturalistic settings and assessment contexts. Machine learning and other computational approaches can produce replicable, automated measurements of these big behavioral data. The…
Descriptors: Artificial Intelligence, Computation, Measurement Techniques, Automation
Christine Mulhern – Grantee Submission, 2020
Choosing where to apply to college is a complex problem with long-term consequences, but many students lack the guidance necessary to make optimal choices. I show that a technology which provides low-cost personalized college admissions information to over forty percent of high schoolers significantly alters college choices. Students shift…
Descriptors: College Choice, College Admission, Artificial Intelligence, Computer Software
Holstein, Kenneth; McLaren, Bruce M.; Aleven, Vincent – Grantee Submission, 2019
Involving stakeholders throughout the creation of new educational technologies can help ensure their usefulness and usability in real-world contexts. However, given the complexity of learning analytics (LA) systems, it can be challenging to meaningfully involve non-technical stakeholders throughout their design and development. This article…
Descriptors: Learning Analytics, Technology Uses in Education, Artificial Intelligence, Stakeholders
Peer reviewed Peer reviewed
Direct linkDirect link
John Sabatini; Arthur C. Graesser; John Hollander; Tenaha O'Reilly – Grantee Submission, 2023
We argue in this paper that there is currently no adequate theoretical framework or model that spans the twelve odd year trajectory from non-reader to proficient reader, nor addresses fine-grain skill acquisition, mastery and integration. The target construct itself, reading proficiency, as often operationalized as an endpoint of formal secondary…
Descriptors: Literacy Education, Intelligent Tutoring Systems, Decision Making, Standards
Zhou, Jianing; Bhat, Suma – Grantee Submission, 2021
Consistency of learning behaviors is known to play an important role in learners' engagement in a course and impact their learning outcomes. Despite significant advances in the area of learning analytics (LA) in measuring various self-regulated learning behaviors, using LA to measure consistency of online course engagement patterns remains largely…
Descriptors: Models, Online Courses, Learner Engagement, Learning Processes
Walter L. Leite; Samrat Roy; Nilanjana Chakraborty; George Michailidis; A. Corinne Huggins-Manley; Sidney K. D'Mello; Mohamad Kazem Shirani Faradonbeh; Emily Jensen; Huan Kuang; Zeyuan Jing – Grantee Submission, 2022
This study presents a novel video recommendation system for an algebra virtual learning environment (VLE) that leverages ideas and methods from engagement measurement, item response theory, and reinforcement learning. Following Vygotsky's Zone of Proximal Development (ZPD) theory, but considering low affect and high affect students separately, we…
Descriptors: Artificial Intelligence, Video Technology, Technology Uses in Education, Program Effectiveness
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2018
While hierarchical machine learning approaches have been used to classify texts into different content areas, this approach has, to our knowledge, not been used in the automated assessment of text difficulty. This study compared the accuracy of four classification machine learning approaches (flat, one-vs-one, one-vs-all, and hierarchical) using…
Descriptors: Artificial Intelligence, Classification, Comparative Analysis, Prediction
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8