NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Grantee Submission161
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 151 to 161 of 161 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Crossley, Scott A.; McNamara, Danielle S. – Grantee Submission, 2014
This study explores correlations between human ratings of essay quality and component scores based on similar natural language processing indices and weighted through a principal component analysis. The results demonstrate that such component scores show small to large effects with human ratings and thus may be suitable to providing both summative…
Descriptors: Essays, Computer Assisted Testing, Writing Evaluation, Scores
Lipschultz, Michael; Litman, Diane; Katz, Sandra; Albacete, Patricia; Jordan, Pamela – Grantee Submission, 2014
Post-problem reflective tutorial dialogues between human tutors and students are examined to predict when the tutor changed the level of abstraction from the student's preceding turn (i.e., used more general terms or more specific terms); such changes correlate with learning. Prior work examined lexical changes in abstraction. In this work, we…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Semantics, Abstract Reasoning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Varner, Laura K.; Jackson, G. Tanner; Snow, Erica L.; McNamara, Danielle S. – Grantee Submission, 2013
This study expands upon an existing model of students' reading comprehension ability within an intelligent tutoring system. The current system evaluates students' natural language input using a local student model. We examine the potential to expand this model by assessing the linguistic features of self-explanations aggregated across entire…
Descriptors: Reading Comprehension, Intelligent Tutoring Systems, Natural Language Processing, Reading Ability
Snow, Erica L.; Allen, Laura K.; Jacovina, Matthew E.; Crossley, Scott A.; Perret, Cecile A.; McNamara, Danielle S. – Grantee Submission, 2015
Writing researchers have suggested that students who are perceived as strong writers (i.e., those who generate texts rated as high quality) demonstrate flexibility in their writing style. While anecdotally this has been a commonly held belief among researchers and educators, there is little empirical research to support this claim. This study…
Descriptors: Writing (Composition), Writing Strategies, Hypothesis Testing, Essays
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jacovina, Matthew E.; McNamara, Danielle S. – Grantee Submission, 2017
In this chapter, we describe several intelligent tutoring systems (ITSs) designed to support student literacy through reading comprehension and writing instruction and practice. Although adaptive instruction can be a powerful tool in the literacy domain, developing these technologies poses significant challenges. For example, evaluating the…
Descriptors: Intelligent Tutoring Systems, Literacy Education, Educational Technology, Technology Uses in Education
Benjamin D. Nye; Arthur C. Graesser; Xiangen Hu – Grantee Submission, 2014
AutoTutor is a natural language tutoring system that has produced learning gains across multiple domains (e.g., computer literacy, physics, critical thinking). In this paper, we review the development, key research findings, and systems that have evolved from AutoTutor. First, the rationale for developing AutoTutor is outlined and the advantages…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Computer Software, Artificial Intelligence
McNamara, Danielle S.; Crossley, Scott A.; Roscoe, Rod – Grantee Submission, 2013
The Writing Pal is an intelligent tutoring system that provides writing strategy training. A large part of its artificial intelligence resides in the natural language processing algorithms to assess essay quality and guide feedback to students. Because writing is often highly nuanced and subjective, the development of these algorithms must…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Writing Instruction, Feedback (Response)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Roscoe, Rod D.; Varner, Laura K.; Crossley, Scott A.; McNamara, Danielle S. – Grantee Submission, 2013
Various computer tools have been developed to support educators' assessment of student writing, including automated essay scoring and automated writing evaluation systems. Research demonstrates that these systems exhibit relatively high scoring accuracy but uncertain instructional efficacy. Students' writing proficiency does not necessarily…
Descriptors: Writing Instruction, Intelligent Tutoring Systems, Computer Assisted Testing, Writing Evaluation
Katz, Sandra; Albacete, Patricia L. – Grantee Submission, 2013
For some time, it has been clear that students who are tutored generally learn more than students who experience classroom instruction (e.g., Bloom, 1984). Much research has been devoted to identifying features of tutorial dialogue that can explain its effectiveness, so that these features can be simulated in natural-language tutoring systems. One…
Descriptors: Rhetorical Theory, Tutoring, Intelligent Tutoring Systems, Secondary School Science
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Crossley, Scott A.; Varner, Laura K.; Roscoe, Rod D.; McNamara, Danielle S. – Grantee Submission, 2013
We present an evaluation of the Writing Pal (W-Pal) intelligent tutoring system (ITS) and the W-Pal automated writing evaluation (AWE) system through the use of computational indices related to text cohesion. Sixty-four students participated in this study. Each student was assigned to either the W-Pal ITS condition or the W-Pal AWE condition. The…
Descriptors: Intelligent Tutoring Systems, Automation, Writing Evaluation, Writing Assignments
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ward, W.; Cole, R.; Bolanos, D.; Buchenroth-Martin, C.; Svirsky, E.; Van Vuuren, S.; Weston, T.; Zheng, J.; Becker, L. – Grantee Submission, 2011
This paper describes My Science Tutor (MyST), an intelligent tutoring system designed to improve science learning by students in 3rd, 4th and 5th grades (7 to 11 years old) through conversational dialogs with a virtual science tutor. In our study, individual students engage in spoken dialogs with the virtual tutor Marni during 15 to 20 minute…
Descriptors: Elementary School Science, Elementary School Students, Science Education, Intelligent Tutoring Systems
« Previous Page | Next Page
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11