NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Grantee Submission20
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 20 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Peer reviewed Peer reviewed
Direct linkDirect link
Dragos-Georgian Corlatescu; Micah Watanabe; Stefan Ruseti; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Modeling reading comprehension processes is a critical task for Learning Analytics, as accurate models of the reading process can be used to match students to texts, identify appropriate interventions, and predict learning outcomes. This paper introduces an improved version of the Automated Model of Comprehension, namely version 4.0. AMoC has its…
Descriptors: Computer Software, Artificial Intelligence, Learning Analytics, Natural Language Processing
Botarleanu, Robert-Mihai; Dascalu, Mihai; Allen, Laura K.; Crossley, Scott Andrew; McNamara, Danielle S. – Grantee Submission, 2022
Automated scoring of student language is a complex task that requires systems to emulate complex and multi-faceted human evaluation criteria. Summary scoring brings an additional layer of complexity to automated scoring because it involves two texts of differing lengths that must be compared. In this study, we present our approach to automate…
Descriptors: Automation, Scoring, Documentation, Likert Scales
Jia Tracy Shen; Michiharu Yamashita; Ethan Prihar; Neil Heffernan; Xintao Wu; Sean McGrew; Dongwon Lee – Grantee Submission, 2021
Educational content labeled with proper knowledge components (KCs) are particularly useful to teachers or content organizers. However, manually labeling educational content is labor intensive and error-prone. To address this challenge, prior research proposed machine learning based solutions to auto-label educational content with limited success.…
Descriptors: Mathematics Education, Knowledge Level, Video Technology, Educational Technology
Nicula, Bogdan; Perret, Cecile A.; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2020
Theories of discourse argue that comprehension depends on the coherence of the learner's mental representation. Our aim is to create a reliable automated representation to estimate readers' level of comprehension based on different productions, namely self-explanations and answers to open-ended questions. Previous work relied on Cohesion Network…
Descriptors: Network Analysis, Reading Comprehension, Automation, Artificial Intelligence
Allen, Laura K.; Mills, Caitlin; Perret, Cecile; McNamara, Danielle S. – Grantee Submission, 2019
This study examines the extent to which instructions to self-explain vs. "other"-explain a text lead readers to produce different forms of explanations. Natural language processing was used to examine the content and characteristics of the explanations produced as a function of instruction condition. Undergraduate students (n = 146)…
Descriptors: Language Processing, Science Instruction, Computational Linguistics, Teaching Methods
McCarthy, Kathryn S.; Allen, Laura K.; Hinze, Scott R. – Grantee Submission, 2020
Open-ended "constructed responses" promote deeper processing of course materials. Further, evaluation of these explanations can yield important information about students' cognition. This study examined how students' constructed responses, generated at different points during learning, relate to their later comprehension outcomes.…
Descriptors: Reading Comprehension, Prediction, Responses, College Students
Öncel, Püren; Flynn, Lauren E.; Sonia, Allison N.; Barker, Kennis E.; Lindsay, Grace C.; McClure, Caleb M.; McNamara, Danielle S.; Allen, Laura K. – Grantee Submission, 2021
Automated Writing Evaluation systems have been developed to help students improve their writing skills through the automated delivery of both summative and formative feedback. These systems have demonstrated strong potential in a variety of educational contexts; however, they remain limited in their personalization and scope. The purpose of the…
Descriptors: Computer Assisted Instruction, Writing Evaluation, Formative Evaluation, Summative Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Robert-Mihai Botarleanu; Micah Watanabe; Mihai Dascalu; Scott A. Crossley; Danielle S. McNamara – Grantee Submission, 2023
Age of Acquisition (AoA) scores approximate the age at which a language speaker fully understands a word's semantic meaning and represent a quantitative measure of the relative difficulty of words in a language. AoA word lists exist across various languages, with English having the most complete lists that capture the largest percentage of the…
Descriptors: Multilingualism, English (Second Language), Second Language Learning, Second Language Instruction
Daniel P. Feller; Amani Talwar; Daphne Greenberg; Ryan D. Kopatich; Joseph P. Magliano – Grantee Submission, 2023
Background: A significant portion of adults struggle to read at a basic level. Word reading (defined here as decoding and word recognition) appears to play a pivotal role for this population of readers; however, less is known about how word reading relates to other important semantic processes (e.g., vocabulary, sentence processing) known to…
Descriptors: Correlation, Word Recognition, Reading Comprehension, Reading Processes
Guerrero, Tricia A.; Wiley, Jennifer – Grantee Submission, 2019
Teachers may wish to use open-ended learning activities and tests, but they are burdensome to assess compared to forced-choice instruments. At the same time, forced-choice assessments suffer from issues of guessing (when used as tests) and may not encourage valuable behaviors of construction and generation of understanding (when used as learning…
Descriptors: Computer Assisted Testing, Student Evaluation, Introductory Courses, Psychology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2018
While hierarchical machine learning approaches have been used to classify texts into different content areas, this approach has, to our knowledge, not been used in the automated assessment of text difficulty. This study compared the accuracy of four classification machine learning approaches (flat, one-vs-one, one-vs-all, and hierarchical) using…
Descriptors: Artificial Intelligence, Classification, Comparative Analysis, Prediction
Nicula, Bogdan; Perret, Cecile A.; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2020
Open-ended comprehension questions are a common type of assessment used to evaluate how well students understand one of multiple documents. Our aim is to use natural language processing (NLP) to infer the level and type of inferencing within readers' answers to comprehension questions using linguistic and semantic features within their responses.…
Descriptors: Natural Language Processing, Taxonomy, Responses, Semantics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhongdi Wu; Eric Larson; Makoto Sano; Doris Baker; Nathan Gage; Akihito Kamata – Grantee Submission, 2023
In this investigation we propose new machine learning methods for automated scoring models that predict the vocabulary acquisition in science and social studies of second grade English language learners, based upon free-form spoken responses. We evaluate performance on an existing dataset and use transfer learning from a large pre-trained language…
Descriptors: Prediction, Vocabulary Development, English (Second Language), Second Language Learning
Ruthe Foushee; Dan Byrne; Marisa Casillas; Susan Goldin-Meadow – Grantee Submission, 2022
Linguistic alignment--the contingent reuse of our interlocutors' language at all levels of linguistic structure--pervades human dialogue. Here, we design unique measures to capture the degree of linguistic alignment between interlocutors' linguistic representations at three levels of structure: lexical, syntactic, and semantic. We track these…
Descriptors: Semantics, Syntax, Vocabulary Skills, Models
Previous Page | Next Page »
Pages: 1  |  2