Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 9 |
Descriptor
Source
Grantee Submission | 9 |
Author
Dascalu, Mihai | 2 |
McNamara, Danielle S. | 2 |
Aaron Haim | 1 |
Allen, Laura K. | 1 |
Andrew S. Lan | 1 |
Bhat, Suma | 1 |
Botarleanu, Robert-Mihai | 1 |
Cai, Zhiqiang | 1 |
Cockroft, Jody L. | 1 |
Copland, Cameron | 1 |
Crossley, Scott Andrew | 1 |
More ▼ |
Publication Type
Reports - Research | 5 |
Speeches/Meeting Papers | 5 |
Reports - Evaluative | 3 |
Journal Articles | 2 |
Reports - Descriptive | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Aaron Haim; Eamon Worden; Neil T. Heffernan – Grantee Submission, 2024
Since GPT-4's release it has shown novel abilities in a variety of domains. This paper explores the use of LLM-generated explanations as on-demand assistance for problems within the ASSISTments platform. In particular, we are studying whether GPT-generated explanations are better than nothing on problems that have no supports and whether…
Descriptors: Artificial Intelligence, Learning Management Systems, Computer Software, Intelligent Tutoring Systems
Botarleanu, Robert-Mihai; Dascalu, Mihai; Allen, Laura K.; Crossley, Scott Andrew; McNamara, Danielle S. – Grantee Submission, 2022
Automated scoring of student language is a complex task that requires systems to emulate complex and multi-faceted human evaluation criteria. Summary scoring brings an additional layer of complexity to automated scoring because it involves two texts of differing lengths that must be compared. In this study, we present our approach to automate…
Descriptors: Automation, Scoring, Documentation, Likert Scales
Danielle S. McNamara; Tracy Arner; Reese Butterfuss; Debshila Basu Mallick; Andrew S. Lan; Rod D. Roscoe; Henry L. Roediger; Richard G. Baraniuk – Grantee Submission, 2022
The learning sciences inherently involve interdisciplinary research with an overarching objective of advancing theories of learning and to inform the design and implementation of effective instructional methods and learning technologies. In these endeavors, learning sciences encompass diverse constructs, measures, processes, and outcomes…
Descriptors: Artificial Intelligence, Learning Processes, Learning Motivation, Educational Research
Zhou, Jianing; Bhat, Suma – Grantee Submission, 2021
Consistency of learning behaviors is known to play an important role in learners' engagement in a course and impact their learning outcomes. Despite significant advances in the area of learning analytics (LA) in measuring various self-regulated learning behaviors, using LA to measure consistency of online course engagement patterns remains largely…
Descriptors: Models, Online Courses, Learner Engagement, Learning Processes
Nicula, Bogdan; Dascalu, Mihai; Newton, Natalie N.; Orcutt, Ellen; McNamara, Danielle S. – Grantee Submission, 2021
Learning to paraphrase supports both writing ability and reading comprehension, particularly for less skilled learners. As such, educational tools that integrate automated evaluations of paraphrases can be used to provide timely feedback to enhance learner paraphrasing skills more efficiently and effectively. Paraphrase identification is a popular…
Descriptors: Computational Linguistics, Feedback (Response), Classification, Learning Processes
Hu, Xiangen; Cai, Zhiqiang; Hampton, Andrew J.; Cockroft, Jody L.; Graesser, Arthur C.; Copland, Cameron; Folsom-Kovarik, Jeremiah T. – Grantee Submission, 2019
In this paper, we consider a minimalistic and behavioristic view of AIS to enable a standardizable mapping of both the behavior of the system and of the learner. In this model, the "learners" interact with the learning "resources" in a given learning "environment" following preset steps of learning…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Metadata, Behavior Patterns
Steven Moore; John Stamper; Norman Bier; Mary Jean Blink – Grantee Submission, 2020
In this paper we show how we can utilize human-guided machine learning techniques coupled with a learning science practitioner interface (DataShop) to identify potential improvements to existing educational technology. Specifically, we provide an interface for the classification of underlying Knowledge Components (KCs) to better model student…
Descriptors: Learning Analytics, Educational Improvement, Classification, Learning Processes
Rebecca A. Dore; Jennifer M. Zosh; Kathy Hirsh-Pasek; Roberta M. Golinkoff – Grantee Submission, 2017
Digital media and electronic toys are changing the landscape of childhood. How does this change impact language learning? In this chapter, we explore potential alignment between six established principles of language and children's engagement with digital media and electronic toys. We argue that electronic toys and digital media are not solely…
Descriptors: Vocabulary Development, Electronic Learning, Toys, Information Technology
Heffernan, Neil T.; Ostrow, Korinn S.; Kelly, Kim; Selent, Douglas; Van Inwegen, Eric G.; Xiong, Xiaolu; Williams, Joseph Jay – Grantee Submission, 2016
Due to substantial scientific and practical progress, learning technologies can effectively adapt to the characteristics and needs of students. This article considers how learning technologies can adapt over time by crowdsourcing contributions from teachers and students -- explanations, feedback, and other pedagogical interactions. Considering the…
Descriptors: Artificial Intelligence, Educational Technology, Student Needs, Electronic Publishing