Publication Date
In 2025 | 1 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 11 |
Since 2016 (last 10 years) | 12 |
Since 2006 (last 20 years) | 12 |
Descriptor
Algorithms | 12 |
Artificial Intelligence | 12 |
Decision Making | 4 |
Natural Language Processing | 4 |
Statistical Inference | 4 |
Bayesian Statistics | 3 |
Causal Models | 3 |
Data Analysis | 3 |
Models | 3 |
Regression (Statistics) | 3 |
Accuracy | 2 |
More ▼ |
Source
Grantee Submission | 12 |
Author
Danielle S. McNamara | 2 |
George Perrett | 2 |
Mihai Dascalu | 2 |
Vincent Dorie | 2 |
Abolfazl Asudeh | 1 |
Abubakir Siedahmed | 1 |
Allen, Laura K. | 1 |
Amy Adair | 1 |
Amy Johnson | 1 |
Andrew Gelman | 1 |
Andrew M. Olney | 1 |
More ▼ |
Publication Type
Reports - Research | 11 |
Speeches/Meeting Papers | 6 |
Journal Articles | 3 |
Reports - Descriptive | 1 |
Education Level
Elementary Education | 1 |
Grade 8 | 1 |
Higher Education | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Postsecondary Education | 1 |
Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Hadis Anahideh; Nazanin Nezami; Abolfazl Asudeh – Grantee Submission, 2025
It is of critical importance to be aware of the historical discrimination embedded in the data and to consider a fairness measure to reduce bias throughout the predictive modeling pipeline. Given various notions of fairness defined in the literature, investigating the correlation and interaction among metrics is vital for addressing unfairness.…
Descriptors: Correlation, Measurement Techniques, Guidelines, Semantics
Oscar Clivio; Avi Feller; Chris Holmes – Grantee Submission, 2024
Reweighting a distribution to minimize a distance to a target distribution is a powerful and flexible strategy for estimating a wide range of causal effects, but can be challenging in practice because optimal weights typically depend on knowledge of the underlying data generating process. In this paper, we focus on design-based weights, which do…
Descriptors: Evaluation Methods, Causal Models, Error of Measurement, Guidelines
Jennifer Hill; George Perrett; Vincent Dorie – Grantee Submission, 2023
Estimation of causal effects requires making comparisons across groups of observations exposed and not exposed to a a treatment or cause (intervention, program, drug, etc). To interpret differences between groups causally we need to ensure that they have been constructed in such a way that the comparisons are "fair." This can be…
Descriptors: Causal Models, Statistical Inference, Artificial Intelligence, Data Analysis
Vincent Dorie; George Perrett; Jennifer L. Hill; Benjamin Goodrich – Grantee Submission, 2022
A wide range of machine-learning-based approaches have been developed in the past decade, increasing our ability to accurately model nonlinear and nonadditive response surfaces. This has improved performance for inferential tasks such as estimating average treatment effects in situations where standard parametric models may not fit the data well.…
Descriptors: Statistical Inference, Causal Models, Artificial Intelligence, Data Analysis
Moran P. Lee; Abubakir Siedahmed; Neil T. Heffernan – Grantee Submission, 2024
Contextual multi-armed bandits have previously been used to personalize student support messages given to learners by supplying a model with relevant context about the user, problem, and available student supports. In this work, we propose using careful feature selection with relevant domain knowledge to improve the quality of student support…
Descriptors: Artificial Intelligence, Educational Technology, Technology Uses in Education, Reinforcement
Yao, Yuling; Vehtari, Aki; Gelman, Andrew – Grantee Submission, 2022
When working with multimodal Bayesian posterior distributions, Markov chain Monte Carlo (MCMC) algorithms have difficulty moving between modes, and default variational or mode-based approximate inferences will understate posterior uncertainty. And, even if the most important modes can be found, it is difficult to evaluate their relative weights in…
Descriptors: Bayesian Statistics, Computation, Markov Processes, Monte Carlo Methods
Andrew M. Olney – Grantee Submission, 2023
Multiple choice questions are traditionally expensive to produce. Recent advances in large language models (LLMs) have led to fine-tuned LLMs that generate questions competitive with human-authored questions. However, the relative capabilities of ChatGPT-family models have not yet been established for this task. We present a carefully-controlled…
Descriptors: Test Construction, Multiple Choice Tests, Test Items, Algorithms
Tamara Broderick; Andrew Gelman; Rachael Meager; Anna L. Smith; Tian Zheng – Grantee Submission, 2022
Probabilistic machine learning increasingly informs critical decisions in medicine, economics, politics, and beyond. To aid the development of trust in these decisions, we develop a taxonomy delineating where trust in an analysis can break down: (1) in the translation of real-world goals to goals on a particular set of training data, (2) in the…
Descriptors: Taxonomy, Trust (Psychology), Algorithms, Probability
Botarleanu, Robert-Mihai; Dascalu, Mihai; Allen, Laura K.; Crossley, Scott Andrew; McNamara, Danielle S. – Grantee Submission, 2021
Text summarization is an effective reading comprehension strategy. However, summary evaluation is complex and must account for various factors including the summary and the reference text. This study examines a corpus of approximately 3,000 summaries based on 87 reference texts, with each summary being manually scored on a 4-point Likert scale.…
Descriptors: Computer Assisted Testing, Scoring, Natural Language Processing, Computer Software
Amy Adair; Ellie Segan; Janice Gobert; Michael Sao Pedro – Grantee Submission, 2023
Developing models and using mathematics are two key practices in internationally recognized science education standards, such as the Next Generation Science Standards (NGSS). However, students often struggle with these two intersecting practices, particularly when developing mathematical models about scientific phenomena. Formative…
Descriptors: Artificial Intelligence, Mathematical Models, Science Process Skills, Inquiry
Marilena Panaite; Mihai Dascalu; Amy Johnson; Renu Balyan; Jianmin Dai; Danielle S. McNamara; Stefan Trausan-Matu – Grantee Submission, 2018
Intelligent Tutoring Systems (ITSs) are aimed at promoting acquisition of knowledge and skills by providing relevant and appropriate feedback during students' practice activities. ITSs for literacy instruction commonly assess typed responses using Natural Language Processing (NLP) algorithms. One step in this direction often requires building a…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Algorithms, Decision Making