Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 3 |
Descriptor
Computational Linguistics | 3 |
Natural Language Processing | 3 |
Artificial Intelligence | 2 |
Classification | 2 |
Comorbidity | 2 |
Correlation | 2 |
Diabetes | 2 |
Drug Therapy | 2 |
Health | 2 |
Health Services | 2 |
Literacy | 2 |
More ▼ |
Source
Grantee Submission | 3 |
Author
Publication Type
Reports - Research | 3 |
Journal Articles | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Audience
Location
California | 3 |
Laws, Policies, & Programs
Assessments and Surveys
Flesch Reading Ease Formula | 1 |
What Works Clearinghouse Rating
Stefan Ruseti; Mihai Dascalu; Amy M. Johnson; Renu Balyan; Kristopher J. Kopp; Danielle S. McNamara – Grantee Submission, 2018
This study assesses the extent to which machine learning techniques can be used to predict question quality. An algorithm based on textual complexity indices was previously developed to assess question quality to provide feedback on questions generated by students within iSTART (an intelligent tutoring system that teaches reading strategies). In…
Descriptors: Questioning Techniques, Artificial Intelligence, Networks, Classification
Balyan, Renu; Crossley, Scott A.; Brown, William, III; Karter, Andrew J.; McNamara, Danielle S.; Liu, Jennifer Y.; Lyles, Courtney R.; Schillinger, Dean – Grantee Submission, 2019
Limited health literacy is a barrier to optimal healthcare delivery and outcomes. Current measures requiring patients to self-report limitations are time-consuming and may be considered intrusive by some. This makes widespread classification of patient health literacy challenging. The objective of this study was to develop and validate…
Descriptors: Patients, Literacy, Health Services, Profiles
Schillinger, Dean; Balyan, Renu; Crossley, Scott A.; McNamara, Danielle S.; Liu, Jennifer Y.; Karter, Andrew J. – Grantee Submission, 2020
Objective: To develop novel, scalable, and valid literacy profiles for identifying limited health literacy patients by harnessing natural language processing. Data Source: With respect to the linguistic content, we analyzed 283 216 secure messages sent by 6941 diabetes patients to physicians within an integrated system's electronic portal.…
Descriptors: Literacy, Profiles, Computational Linguistics, Syntax