Publication Date
In 2025 | 3 |
Since 2024 | 11 |
Descriptor
Source
Grantee Submission | 11 |
Author
Zhiyong Zhang | 3 |
Charlotte Z. Mann | 2 |
Johann A. Gagnon-Bartsch | 2 |
Wen Qu | 2 |
Adam C. Sales | 1 |
Adam Sales | 1 |
Alexandra M. Pierce | 1 |
Anqi Fa | 1 |
Austin H. Johnson | 1 |
Benjamin Kelcey | 1 |
Brian Freeman | 1 |
More ▼ |
Publication Type
Reports - Research | 9 |
Journal Articles | 3 |
Information Analyses | 2 |
Reports - Descriptive | 1 |
Speeches/Meeting Papers | 1 |
Education Level
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Researchers | 1 |
Location
Texas | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Alexandra M. Pierce; Lisa M. H. Sanetti; Melissa A. Collier-Meek; Austin H. Johnson – Grantee Submission, 2024
Visual analysis is the primary methodology used to determine treatment effects from graphed single-case design data. Previous studies have demonstrated mixed findings related to interrater agreement between both expert and novice visual analysts, which represents a critical limitation of visual analysis and supports calls for also presenting…
Descriptors: Graphs, Interrater Reliability, Statistical Analysis, Expertise
Ke-Hai Yuan; Zhiyong Zhang – Grantee Submission, 2025
Most methods for structural equation modeling (SEM) focused on the analysis of covariance matrices. However, "Historically, interesting psychological theories have been phrased in terms of correlation coefficients." This might be because data in social and behavioral sciences typically do not have predefined metrics. While proper methods…
Descriptors: Correlation, Statistical Analysis, Models, Tests
Sarah Narvaiz; Qinyun Lin; Joshua M. Rosenberg; Kenneth A. Frank; Spiro J. Maroulis; Wei Wang; Ran Xu – Grantee Submission, 2024
Sensitivity analysis, a statistical method crucial for validating inferences across disciplines, quantifies the conditions that could alter conclusions (Razavi et al., 2021). One line of work is rooted in linear models and foregrounds the sensitivity of inferences to the strength of omitted variables (Cinelli & Hazlett, 2019; Frank, 2000). A…
Descriptors: Statistical Analysis, Computer Software, Robustness (Statistics), Statistical Inference
Kaitlyn G. Fitzgerald; Elizabeth Tipton – Grantee Submission, 2024
This article presents methods for using extant data to improve the properties of estimators of the standardized mean difference (SMD) effect size. Because samples recruited into education research studies are often more homogeneous than the populations of policy interest, the variation in educational outcomes can be smaller in these samples than…
Descriptors: Data Use, Computation, Effect Size, Meta Analysis
Ziqian Xu; Fei Gao; Anqi Fa; Wen Qu; Zhiyong Zhang – Grantee Submission, 2024
Conditional process models, including moderated mediation models and mediated moderation models, are widely used in behavioral science research. However, few studies have examined approaches to conduct statistical power analysis for such models and there is also a lack of software packages that provide such power analysis functionalities. In this…
Descriptors: Statistical Analysis, Sample Size, Mediation Theory, Monte Carlo Methods
Lingbo Tong; Wen Qu; Zhiyong Zhang – Grantee Submission, 2025
Factor analysis is widely utilized to identify latent factors underlying the observed variables. This paper presents a comprehensive comparative study of two widely used methods for determining the optimal number of factors in factor analysis, the K1 rule, and parallel analysis, along with a more recently developed method, the bass-ackward method.…
Descriptors: Factor Analysis, Monte Carlo Methods, Statistical Analysis, Sample Size
Nianbo Dong; Benjamin Kelcey; Jessaca Spybrook; Yanli Xie; Dung Pham; Peilin Qiu; Ning Sui – Grantee Submission, 2024
Multisite trials that randomize individuals (e.g., students) within sites (e.g., schools) or clusters (e.g., teachers/classrooms) within sites (e.g., schools) are commonly used for program evaluation because they provide opportunities to learn about treatment effects as well as their heterogeneity across sites and subgroups (defined by moderating…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Educational Research, Effect Size
Charlotte Z. Mann; Adam C. Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2025
Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational data sets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive…
Descriptors: Causal Models, Statistical Analysis, Privacy, Risk
Regan Mozer; Luke Miratrix – Grantee Submission, 2024
For randomized trials that use text as an outcome, traditional approaches for assessing treatment impact require that each document first be manually coded for constructs of interest by trained human raters. This process, the current standard, is both time-consuming and limiting: even the largest human coding efforts are typically constrained to…
Descriptors: Artificial Intelligence, Coding, Efficiency, Statistical Inference
Sandra Jo Wilson; Brian Freeman; E. C. Hedberg – Grantee Submission, 2024
As reporting of effect sizes in evaluation studies has proliferated, researchers and consumers of research need tools for interpreting or benchmarking the magnitude of those effect sizes that are relevant to the intervention, target population, and outcome measure being considered. Similarly, researchers planning education studies with social and…
Descriptors: Benchmarking, Effect Size, Meta Analysis, Statistical Analysis
Jaylin Lowe; Charlotte Z. Mann; Jiaying Wang; Adam Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2024
Recent methods have sought to improve precision in randomized controlled trials (RCTs) by utilizing data from large observational datasets for covariate adjustment. For example, consider an RCT aimed at evaluating a new algebra curriculum, in which a few dozen schools are randomly assigned to treatment (new curriculum) or control (standard…
Descriptors: Randomized Controlled Trials, Middle School Mathematics, Middle School Students, Middle Schools