Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 5 |
Descriptor
Source
Grantee Submission | 5 |
Author
Graesser, Arthur C. | 5 |
Cai, Zhiqiang | 2 |
Hu, Xiangen | 2 |
Chen, Su | 1 |
Eagan, Brendan | 1 |
Fang, Ying | 1 |
Forsyth, Carol M. | 1 |
Frijters, Jan | 1 |
Greenberg, Daphne | 1 |
Lehman, Blair A. | 1 |
Sabatini, John | 1 |
More ▼ |
Publication Type
Journal Articles | 3 |
Reports - Research | 3 |
Reports - Descriptive | 2 |
Speeches/Meeting Papers | 2 |
Education Level
Adult Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Woodcock Johnson Tests of… | 1 |
What Works Clearinghouse Rating
Cai, Zhiqiang; Hu, Xiangen; Graesser, Arthur C. – Grantee Submission, 2019
Conversational Intelligent Tutoring Systems (ITSs) are expensive to develop. While simple online courseware could be easily authored by teachers, the authoring of conversational ITSs usually involves a team of experts with different expertise, including domain experts, linguists, instruction designers, programmers, artists, computer scientists,…
Descriptors: Programming, Intelligent Tutoring Systems, Courseware, Educational Technology
Chen, Su; Fang, Ying; Shi, Genghu; Sabatini, John; Greenberg, Daphne; Frijters, Jan; Graesser, Arthur C. – Grantee Submission, 2021
This paper describes a new automated disengagement tracking system (DTS) that detects learners' maladaptive behaviors, e.g. mind-wandering and impetuous responding, in an intelligent tutoring system (ITS), called AutoTutor. AutoTutor is a conversation-based intelligent tutoring system designed to help adult literacy learners improve their reading…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Attention, Adult Literacy
Cai, Zhiqiang; Siebert-Evenstone, Amanda; Eagan, Brendan; Shaffer, David Williamson; Hu, Xiangen; Graesser, Arthur C. – Grantee Submission, 2019
Coding is a process of assigning meaning to a given piece of evidence. Evidence may be found in a variety of data types, including documents, research interviews, posts from social media, conversations from learning platforms, or any source of data that may provide insights for the questions under qualitative study. In this study, we focus on text…
Descriptors: Semantics, Computational Linguistics, Evidence, Coding
Graesser, Arthur C.; Forsyth, Carol M.; Lehman, Blair A. – Grantee Submission, 2017
Background: Pedagogical agents are computerized talking heads or embodied animated avatars that help students learn by performing actions and holding conversations with the students in natural language. Dialogues occur between a tutor agent and the student in the case of AutoTutor and other intelligent tutoring systems with natural language…
Descriptors: Intelligent Tutoring Systems, Computer Managed Instruction, Natural Language Processing, Instructional Design
Graesser, Arthur C. – Grantee Submission, 2016
AutoTutor helps students learn by holding a conversation in natural language. AutoTutor is adaptive to the learners' actions, verbal contributions, and in some systems their emotions. Many of AutoTutor's conversation patterns simulate human tutoring, but other patterns implement ideal pedagogies that open the door to computer tutors eclipsing…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Communication Strategies, Dialogs (Language)