Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 14 |
Descriptor
Source
Chemical Engineering Education | 88 |
Author
Publication Type
Journal Articles | 78 |
Reports - Descriptive | 61 |
Guides - Classroom - Teacher | 11 |
Reports - Research | 5 |
Speeches/Meeting Papers | 3 |
Guides - General | 1 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 13 |
Postsecondary Education | 9 |
Adult Education | 1 |
Audience
Practitioners | 34 |
Teachers | 31 |
Administrators | 7 |
Researchers | 2 |
Students | 1 |
Location
Chile | 2 |
Australia | 1 |
Belgium | 1 |
Canada | 1 |
Canada (Vancouver) | 1 |
Georgia (Atlanta) | 1 |
Indiana | 1 |
Indonesia | 1 |
North Carolina | 1 |
Pennsylvania | 1 |
Pennsylvania (Pittsburgh) | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating

Seider, Warren D.; Ungar, Lyle H. – Chemical Engineering Education, 1987
Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…
Descriptors: Chemical Engineering, College Mathematics, College Science, Course Content

Valle-Riestra, J. Frank – Chemical Engineering Education, 1983
Describes a course designed to expose neophytes to methodology used in chemical process industries to evaluate commercial feasibility of proposed projects. Previously acquired disciplines are integrated to facilitate process synthesis, gain appreciation of nature of industrial projects and industrial viewpoint in managing them, and to become adept…
Descriptors: Chemical Engineering, Chemical Industry, Course Content, Course Descriptions

Miranda, R. – Chemical Engineering Education, 1989
Described is a heterogeneous catalysis course which has elements of materials processing embedded in the classical format of catalytic mechanisms and surface chemistry. A course outline and list of examples of recent review papers written by students are provided. (MVL)
Descriptors: Chemical Analysis, Chemical Engineering, Chemical Industry, Chemical Reactions

Arkun, Yaman; And Others – Chemical Engineering Education, 1988
Describes a graduate engineering course which specializes in model predictive control. Lists course outline and scope. Discusses some specific topics and teaching methods. Suggests final projects for the students. (MVL)
Descriptors: Automation, Chemistry, College Science, Course Content

Ellington, Rex T. – Chemical Engineering Education, 1988
Indicates that changes in the industrial economy have reflected educational needs for engineering students. Cites technical content, communication and interpersonal skills and industry functions as improvement areas. Describes curriculum changes, course specifics, technology, and management tools. (RT)
Descriptors: Administrator Education, Business Communication, College Science, Communication Skills

DeCoursey, W. J. – Chemical Engineering Education, 1987
Describes the organization of a graduate course dealing with mass transfer, particularly as it relates to chemical reactions. Discusses the course outline, including mathematics models of mass transfer, enhancement of mass transfer rates by homogeneous chemical reaction, and gas-liquid systems with chemical reaction. (TW)
Descriptors: Chemical Engineering, Chemical Nomenclature, Chemical Reactions, College Science

Eckert, Roger E.; Ybarra, Robert M. – Chemical Engineering Education, 1988
Describes a senior level chemical engineering course at Purdue University that parallels an industrial process development department. Stresses the course organization, manager-engineer contract, evaluation of students, course evaluation, and gives examples of course improvements made during the course. (CW)
Descriptors: Chemical Engineering, Chemistry, College Science, Course Content

Deshpande, Pradeep B. – Chemical Engineering Education, 1988
Describes an engineering course for graduate study in process control. Lists four major topics: interaction analysis, multiloop controller design, decoupling, and multivariable control strategies. Suggests a course outline and gives information about each topic. (MVL)
Descriptors: Automation, College Science, Course Content, Course Descriptions

Sussman, M. V. – Chemical Engineering Education, 1987
Describes a course offered at Tufts University (Massachusetts) to engineering students entitled "Technology as Culture," which attempts to show that technology is a strong determinant of social structure and a prime factor in causing cultural change. Includes an outline of the four-part lecture schedule. (TW)
Descriptors: College Science, Course Content, Course Descriptions, Cultural Interrelationships

Brewster, B. S.; Hecker, W. C. – Chemical Engineering Education, 1988
Describes an undergraduate chemical engineering course at Brigham Young University to provide training and experience in oral presentation, familiarity with the chemical engineering literature and exposure to a wide range of engineering topics. Summarizes the course description. Discusses the course evaluation. (CW)
Descriptors: Chemical Engineering, Chemistry, College Science, Course Content

Lane, Alan M. – Chemical Engineering Education, 1989
Reported are the results of a 1987 survey of U.S. chemical engineering departments on health and safety. Some details of what is being done at the University of Alabama are provided. A syllabus and reading resources for a survey course on safety, health, environmental, and ethical issues are included. (MVL)
Descriptors: Chemical Engineering, College Science, Course Content, Curriculum Development

Briedis, Daina M. – Chemical Engineering Education, 1988
Describes a course which has been designed to develop oral and written communication skills appropriate for engineering graduate students and for the demands of their post-graduate careers. Provides course strategy and content. (MVL)
Descriptors: College Science, Communication Skills, Course Content, Course Descriptions

Miller, William M.; Petrich, Mark A. – Chemical Engineering Education, 1991
A class in which students learn about the roles that chemical engineers play in a variety of industries is described. Outlines from the first two class offerings and discussions of the use of guest speakers, videos, plant visits, student projects, and grading are included. (KR)
Descriptors: Career Awareness, Chemical Engineering, Chemistry, College Science