NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Chemical Engineering Education88
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 46 to 60 of 88 results Save | Export
Peer reviewed Peer reviewed
Miller, Clarence A. – Chemical Engineering Education, 1981
Discusses a one-semester course on recovering fossil fuels and minerals from underground formations. Includes course outline and information of its major divisions: (1) Geological Background; (2) Flow, Transport, and Interfacial Phenomena in Porous Media; and (3) Description of Underground Processes. (SK)
Descriptors: Chemistry, College Science, Course Content, Course Descriptions
Peer reviewed Peer reviewed
Wankat, Phillip C. – Chemical Engineering Education, 1981
Reviews an elective course designed to incorporate: (1) study of operating methods for adsorption, chromatography, and ion exchange in a pattern set by the instructor; (2) study of student selected topics with instructor developed lectures and assignments; and (3) course project done by each student. (SK)
Descriptors: Chemistry, Chromatography, College Science, Course Content
Peer reviewed Peer reviewed
Peppas, Nicholas A. – Chemical Engineering Education, 1980
Presents a description, course outline, review articles and rationale for a course on Polymerization Reaction Engineering at Purdue University, Indiana. (JN)
Descriptors: Chemical Industry, Chemical Reactions, Chemistry, Course Content
Peer reviewed Peer reviewed
Edgar, T. F. – Chemical Engineering Education, 1990
Discusses a "process control" course in undergraduate chemical engineering. Describes current practices and philosophy and an outline for a course to be taught in the future. Appended are summaries of 12 participants' discussion. (YP)
Descriptors: Chemical Engineering, College Science, Course Content, Course Descriptions
Peer reviewed Peer reviewed
Solen, Kenneth A.; Kuchar, Marvin C. – Chemical Engineering Education, 1990
Presents some principles for specifying general classes of polymers for predicting relative chemical attack from acids, bases, oxidants, and certain common antagonists. Also discusses predicting relative solvent effects. Suggests uses of this information in two or three lectures in a chemical engineering materials course. (YP)
Descriptors: Chemical Engineering, Chemical Reactions, College Science, Course Content
Peer reviewed Peer reviewed
England, R.; Field, R. W. – Chemical Engineering Education, 1989
This article focuses on the changes made in the undergraduate laboratory program of the first degree course in chemical engineering at the University of Bath (England). Describes experiments relating to the Engineering Applications 1 (EA1) requirements set by the Engineering Council. (YP)
Descriptors: College Science, Course Content, Course Descriptions, Engineering
Peer reviewed Peer reviewed
Lee, William E., III – Chemical Engineering Education, 1991
Describes an undergraduate course in chemical engineering that details the technology of immobilized enzymes and cells. Includes the course rationale and purpose; the course outline when offered as an engineering elective in the biotechnology area; and discussion of appropriate text, selected real-world applications, and laboratory presentations.…
Descriptors: Chemical Engineering, Course Content, Course Descriptions, Curriculum Development
Peer reviewed Peer reviewed
Perlmutter, D. D. – Chemical Engineering Education, 1978
This course uses stability as a central theme around which to organize a wide range of reactor concerns. This approach brings together the subject matter of catalyst particles with that of well-stirred vessels and tubular reactor geometry. (Author/BB)
Descriptors: Chemistry, College Science, Course Content, Curriculum
Peer reviewed Peer reviewed
Wheelock, T. D. – Chemical Engineering Education, 1978
This course introduces graduate students and advanced undergraduates to coal science and technology. Topics include: (1) the nature and occurrence of coal, (2) its chemical and physical characteristics, (3) methods of cleaning and preparing coal, and (4) processes for converting coal into clean solid, liquid, and gaseous fuels, as well as coke.…
Descriptors: Chemistry, Course Content, Curriculum, Earth Science
Peer reviewed Peer reviewed
Carbonell, R. G.; Whitaker, S. – Chemical Engineering Education, 1978
This course concentrates on a rigorous development of the multicomponent transport equations, boundary conditions at phase interfaces, and volume-averaged transport equations for multiphase reacting systems. (BB)
Descriptors: Chemistry, College Science, Course Content, Curriculum
Peer reviewed Peer reviewed
Hess, Dennis W. – Chemical Engineering Education, 1990
Presents a model for silicon oxidation in the manufacture of silicon devices and integrated circuits. Provides homework problems and their solutions. (YP)
Descriptors: Chemical Engineering, Chemical Reactions, College Science, Course Content
Peer reviewed Peer reviewed
Kumar, Ashok; And Others – Chemical Engineering Education, 1989
Provides an overview of the Computer-Aided Management of Emergency Operations (CAMEO) model and its use in the classroom as a training tool in the "Hazardous Chemical Spills" course. Presents six problems illustrating classroom use of CAMEO. Lists 16 references. (YP)
Descriptors: Chemical Engineering, College Science, Computer Oriented Programs, Course Content
Peer reviewed Peer reviewed
Davis, Mark E. – Chemical Engineering Education, 1983
Describes a two-quarter sequence of graduate courses in numerical methods and modeling for chemical engineers. Rationale, course content, methodology, topic development, and such course requirements as homework and design projects are considered. Emphasis is placed on the treatment of numerical methods implemented in commercial software. (JM)
Descriptors: Chemical Engineering, Computer Oriented Programs, Course Content, Course Descriptions
Peer reviewed Peer reviewed
Kenney, C. N. – Chemical Engineering Education, 1980
Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)
Descriptors: Chemical Industry, Chemical Reactions, Chemistry, College Science
Peer reviewed Peer reviewed
Davis, Robert H.; Kompala, Dhinakar S. – Chemical Engineering Education, 1989
Describes a course entitled "Biotechnology Laboratory" which introduces a variety of laboratory methods associated with biotechnology. Describes the history, content, and seven experiments of the course. The seven experiments are selected from microbiology and molecular biology, kinetics and fermentation, and downstream…
Descriptors: Chemical Engineering, College Science, Course Content, Course Descriptions
Pages: 1  |  2  |  3  |  4  |  5  |  6