NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 45 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Silverstein, David L.; Vigeant, Margot A. S. – Chemical Engineering Education, 2012
A survey of faculty teaching the chemical reaction engineering course or sequence during the 2009-2010 academic year at chemical engineering programs in the United States and Canada reveals change in terms of content, timing, and approaches to teaching. The report consists of two parts: first, a statistical and demographic characterization of the…
Descriptors: Chemistry, Chemical Engineering, Foreign Countries, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Kopelevich, Dmitry I.; Ziegler, Kirk J.; Lindner, Angela S.; Bonzongo, Jean-Claude J. – Chemical Engineering Education, 2012
Because rapid growth of nanotechnology is expected to lead to intentional and non-intentional releases, future engineers will need to minimize negative environmental and health impacts of nanomaterials. We developed two upper-level undergraduate courses centered on life-cycle assessment of nanomaterials. The first part of the course sequence…
Descriptors: Curriculum Design, Engineering Education, Higher Education, Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Harris, Andrew T. – Chemical Engineering Education, 2009
The University of Sydney has offered an undergraduate course in particle technology using a contemporary problem based learning (PBL) methodology since 2005. Student learning is developed through the solution of complex, open-ended problems drawn from modern chemical engineering practice. Two examples are presented; i) zero emission electricity…
Descriptors: Feedback (Response), Problem Based Learning, Course Evaluation, Foreign Countries
Peer reviewed Peer reviewed
Kabel, Robert L. – Chemical Engineering Education, 1978
Describes the genesis, development, implementation, and evaluation of a graduate level kinetics course based on selected influential papers in chemical reaction engineering. (BB)
Descriptors: Chemistry, College Science, Course Content, Curriculum
Peer reviewed Peer reviewed
Soong, David S. – Chemical Engineering Education, 1981
Following a brief introduction to the origin and nature of a course in polymer rheology and melt processing, discusses course objectives, detailed content, teaching strategies, and observations/experiences from its first offering. (SK)
Descriptors: Chemistry, College Science, Course Content, Course Descriptions
Peer reviewed Peer reviewed
Rajagopalan, Raj – Chemical Engineering Education, 1978
This course is based on the premise that a sound base in the mechanics and electrokinetics of the dispersed phase is essential for an understanding of the macroscopically apparent behavior of such disperse systems. (Author/BB)
Descriptors: Chemistry, College Science, Course Content, Curriculum
Peer reviewed Peer reviewed
Baasel, William D. – Chemical Engineering Education, 1982
Students complete a project at Ohio University to understand the process of plant design. This and other goals of a plant design course are discussed, including student/instructor presentations and typical problems confronted by the instructors of the course. (JN)
Descriptors: Chemistry, College Science, Course Content, Course Descriptions
Peer reviewed Peer reviewed
Gupta, J. P. – Chemical Engineering Education, 1989
Describes a course for teaching chemical engineering students about safety and hazards. Summarizes the course content including topics for term papers and disciplines related to this course. Lists 18 references. (YP)
Descriptors: Chemical Engineering, College Science, Course Content, Course Descriptions
Peer reviewed Peer reviewed
Middleman, Stanley – Chemical Engineering Education, 1978
This course, offered by the departments of chemical engineering and polymer science and engineering at the University of Massachusetts, is mainly a course in applied fluid dynamics with an emphasis on flow pressures dominated by viscous effects. (BB)
Descriptors: College Science, Course Content, Course Descriptions, Curriculum
Peer reviewed Peer reviewed
Anderson, Timothy J. – Chemical Engineering Education, 1990
Presents a synopsis of four lectures given in an elective senior-level electronic material processing course to introduce solid state electronics. Provides comparisons of a large scale chemical processing plant and an integrated circuit. (YP)
Descriptors: Chemical Engineering, College Science, Course Content, Electric Circuits
Peer reviewed Peer reviewed
Takoudis, Christos G. – Chemical Engineering Education, 1990
Discusses chemical vapor deposition epitaxy on patternless and patterned substrates for an electronic materials processing course. Describes the processs types and features of epitaxy. Presents some potential problems of epitaxy. Lists 38 references. (YP)
Descriptors: Chemical Engineering, Chemical Reactions, College Science, Course Content
Peer reviewed Peer reviewed
Lauffenburger, Douglas A. – Chemical Engineering Education, 1989
Gives an overview of a course in chemical engineering entitled "Cellular Bioengineering," dealing with how chemical engineering principles can be applied to molecular cell biology. Topics used are listed and some key references are discussed. Listed are 85 references. (YP)
Descriptors: Biology, Chemical Engineering, College Science, Course Content
Peer reviewed Peer reviewed
Miller, Clarence A. – Chemical Engineering Education, 1981
Discusses a one-semester course on recovering fossil fuels and minerals from underground formations. Includes course outline and information of its major divisions: (1) Geological Background; (2) Flow, Transport, and Interfacial Phenomena in Porous Media; and (3) Description of Underground Processes. (SK)
Descriptors: Chemistry, College Science, Course Content, Course Descriptions
Peer reviewed Peer reviewed
Wankat, Phillip C. – Chemical Engineering Education, 1981
Reviews an elective course designed to incorporate: (1) study of operating methods for adsorption, chromatography, and ion exchange in a pattern set by the instructor; (2) study of student selected topics with instructor developed lectures and assignments; and (3) course project done by each student. (SK)
Descriptors: Chemistry, Chromatography, College Science, Course Content
Peer reviewed Peer reviewed
Edgar, T. F. – Chemical Engineering Education, 1990
Discusses a "process control" course in undergraduate chemical engineering. Describes current practices and philosophy and an outline for a course to be taught in the future. Appended are summaries of 12 participants' discussion. (YP)
Descriptors: Chemical Engineering, College Science, Course Content, Course Descriptions
Previous Page | Next Page ยป
Pages: 1  |  2  |  3