NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations1
Showing 1 to 15 of 1,885 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Dragica Ljubisavljevic; Marko Koprivica; Aleksandar Kostic; Vladan Devedžic – International Association for Development of the Information Society, 2023
This paper delves into statistical disparities between human-written and ChatGPT-generated texts, utilizing an analysis of Shannon's equitability values, and token frequency. Our findings indicate that Shannon's equitability can potentially be a differentiating factor between texts produced by humans and those generated by ChatGPT. Additionally,…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, Writing (Composition)
Takashi Kawakami; Akihiko Saeki – Mathematics Education Research Group of Australasia, 2024
This study elaborates on the pivotal roles of mathematical and statistical models in data-driven predictions in an integrated STEM context using the case of Year 4 students: (?) "a descriptive means" to describe the features of trends and variability of data and (?) "an explanatory means" to explain causal relationships behind…
Descriptors: Mathematical Models, Statistical Analysis, Data Use, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Matayoshi, Jeffrey; Karumbaiah, Shamya – International Educational Data Mining Society, 2021
Research studies in Educational Data Mining (EDM) often involve several variables related to student learning activities. As such, it may be necessary to run multiple statistical tests simultaneously, thereby leading to the problem of multiple comparisons. The Benjamini-Hochberg (BH) procedure is commonly used in EDM research to address this…
Descriptors: Statistical Analysis, Validity, Classification, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Fromm, Davida; Katta, Saketh; Paccione, Mason; Hecht, Sophia; Greenhouse, Joel; MacWhinney, Brian; Schnur, Tatiana T. – Journal of Speech, Language, and Hearing Research, 2021
Purpose: Analysis of connected speech in the field of adult neurogenic communication disorders is essential for research and clinical purposes, yet time and expertise are often cited as limiting factors. The purpose of this project was to create and evaluate an automated program to score and compute the measures from the Quantitative Production…
Descriptors: Speech, Automation, Statistical Analysis, Adults
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Goutte, Cyril; Durand, Guillaume – International Educational Data Mining Society, 2020
Learning curves are an important tool in cognitive diagnostics modeling to help assess how well students acquire new skills, and to refine and improve knowledge component models. Learning curves are typically obtained from a model estimated on real data obtained from a finite, and usually limited, sample of students. As a consequence, there is…
Descriptors: Learning, Models, Computation, Statistical Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xue, Linting; Lynch, Collin F. – International Educational Data Mining Society, 2020
In order to effectively grade persuasive writing we must be able to reliably identify and extract extract argument structures. In order to do this we must classify arguments by their structural roles (e.g., major claim, claim, and premise). Current approaches to classification typically rely on statistical models with heavy feature-engineering or…
Descriptors: Persuasive Discourse, Classification, Artificial Intelligence, Statistical Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhao, Siqian; Wang, Chunpai; Sahebi, Shaghayegh – International Educational Data Mining Society, 2020
Students acquire knowledge as they interact with a variety of learning materials, such as video lectures, problems, and discussions. Modeling student knowledge at each point during their learning period and understanding the contribution of each learning material to student knowledge are essential for detecting students' knowledge gaps and…
Descriptors: Learning, Knowledge Level, Models, Instructional Materials
Rebecca Burtenshaw; Merrilyn Goos – Mathematics Education Research Group of Australasia, 2024
This position paper examines the phenomenon of the McNamara Fallacy to analyse flawed conceptions of "success" in mathematics learning, normalised assessment structures and their implications for mathematics education. The established presence of the McNamara Fallacy and the ramifications of this statistical fallacy provide a foundation…
Descriptors: Criticism, Misconceptions, Mathematics Education, Success
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Qian; Rangwala, Huzefa – International Educational Data Mining Society, 2020
Over the past decade, machine learning has become an integral part of educational technologies. With more and more applications such as students' performance prediction, course recommendation, dropout prediction and knowledge tracing relying upon machine learning models, there is increasing evidence and concerns about bias and unfairness of these…
Descriptors: Artificial Intelligence, Bias, Learning Analytics, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Hancock, Gregory R.; Johnson, Tessa – AERA Online Paper Repository, 2018
Longitudinal models provide researchers with a framework for investigating key aspects of change over time, but rarely is "time" itself modeled as a focal parameter of interest. Rather than treat time as purely an index of measurement occasions, the proposed Time to Criterion (T2C) growth model allows for modeling individual variability…
Descriptors: Statistical Analysis, Longitudinal Studies, Time, Structural Equation Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Piech, Chris; Bumbacher, Engin; Davis, Richard – International Educational Data Mining Society, 2020
One crucial function of a classroom, and a school more generally, is to prepare students for future learning. Students should have the capacity to learn new information and to acquire new skills. This ability to "learn" is a core competency in our rapidly changing world. But how do we measure ability to learn? And how can we measure how…
Descriptors: Academic Ability, Measurement, Middle School Students, Achievement Gains
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zehner, Fabian; Harrison, Scott; Eichmann, Beate; Deribo, Tobias; Bengs, Daniel; Andersen, Nico; Hahnel, Carolin – International Educational Data Mining Society, 2020
The "2nd Annual WPI-UMASS-UPENN EDM Data Mining Challenge" required contestants to predict efficient testtaking based on log data. In this paper, we describe our theory-driven and psychometric modeling approach. For feature engineering, we employed the Log-Normal Response Time Model for estimating latent person speed, and the Generalized…
Descriptors: Data Analysis, Competition, Classification, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rachatasumrit, Napol; Koedinger, Kenneth R. – International Educational Data Mining Society, 2021
Student modeling is useful in educational research and technology development due to a capability to estimate latent student attributes. Widely used approaches, such as the Additive Factors Model (AFM), have shown satisfactory results, but they can only handle binary outcomes, which may yield potential information loss. In this work, we propose a…
Descriptors: Models, Student Characteristics, Feedback (Response), Error Correction
Peer reviewed Peer reviewed
Direct linkDirect link
Lorah, Julie Ann – AERA Online Paper Repository, 2018
The Bayesian information criterion (BIC) can be useful for model selection within multilevel modeling studies. However, the formula for BIC requires a value for N, which is unclear in multilevel models, since N is observed in at least two levels. The present study uses simulated data to evaluate the rate of false positives and power when using a…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Computation, Statistical Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhao, Yijun; Lackaye, Bryan; Dy, Jennifier G.; Brodley, Carla E. – International Educational Data Mining Society, 2020
Accurately predicting which students are best suited for graduate programs is beneficial to both students and colleges. In this paper, we propose a quantitative machine learning approach to predict an applicant's potential performance in the graduate program. Our work is based on a real world dataset consisting of MS in CS [Master of Science in…
Descriptors: Artificial Intelligence, College Admission, Masters Programs, Professional Education
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  126