Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 17 |
Descriptor
Source
International Educational… | 12 |
Action, Criticism, and Theory… | 1 |
Grantee Submission | 1 |
Interactive Learning… | 1 |
Mathematics Education… | 1 |
Online Submission | 1 |
Research in Learning… | 1 |
Author
González-Brenes, José P. | 2 |
Huang, Yun | 2 |
Abreu, Rui | 1 |
Adjei, Seth A. | 1 |
Ahrens, Stephen W. | 1 |
Akihiko Saeki | 1 |
Allen, Laura K. | 1 |
Andersen, Nico | 1 |
Ayad, Hanan | 1 |
Baker, Ryan S. | 1 |
Beasley, T. Mark | 1 |
More ▼ |
Publication Type
Education Level
Higher Education | 5 |
Postsecondary Education | 5 |
Secondary Education | 5 |
High Schools | 4 |
Junior High Schools | 3 |
Middle Schools | 3 |
Elementary Education | 2 |
Grade 8 | 1 |
Grade 9 | 1 |
Audience
Practitioners | 2 |
Researchers | 2 |
Administrators | 1 |
Location
Canada | 1 |
Florida | 1 |
Ireland | 1 |
Japan | 1 |
Kansas | 1 |
Massachusetts (Boston) | 1 |
Portugal | 1 |
Spain | 1 |
USSR | 1 |
United States | 1 |
Washington | 1 |
More ▼ |
Laws, Policies, & Programs
Individuals with Disabilities… | 1 |
Assessments and Surveys
Modern Language Aptitude Test | 1 |
National Adult Literacy… | 1 |
National Assessment of… | 1 |
What Works Clearinghouse Rating
Takashi Kawakami; Akihiko Saeki – Mathematics Education Research Group of Australasia, 2024
This study elaborates on the pivotal roles of mathematical and statistical models in data-driven predictions in an integrated STEM context using the case of Year 4 students: (?) "a descriptive means" to describe the features of trends and variability of data and (?) "an explanatory means" to explain causal relationships behind…
Descriptors: Mathematical Models, Statistical Analysis, Data Use, Prediction
Zhao, Siqian; Wang, Chunpai; Sahebi, Shaghayegh – International Educational Data Mining Society, 2020
Students acquire knowledge as they interact with a variety of learning materials, such as video lectures, problems, and discussions. Modeling student knowledge at each point during their learning period and understanding the contribution of each learning material to student knowledge are essential for detecting students' knowledge gaps and…
Descriptors: Learning, Knowledge Level, Models, Instructional Materials
Hu, Qian; Rangwala, Huzefa – International Educational Data Mining Society, 2020
Over the past decade, machine learning has become an integral part of educational technologies. With more and more applications such as students' performance prediction, course recommendation, dropout prediction and knowledge tracing relying upon machine learning models, there is increasing evidence and concerns about bias and unfairness of these…
Descriptors: Artificial Intelligence, Bias, Learning Analytics, Statistical Analysis
Zehner, Fabian; Harrison, Scott; Eichmann, Beate; Deribo, Tobias; Bengs, Daniel; Andersen, Nico; Hahnel, Carolin – International Educational Data Mining Society, 2020
The "2nd Annual WPI-UMASS-UPENN EDM Data Mining Challenge" required contestants to predict efficient testtaking based on log data. In this paper, we describe our theory-driven and psychometric modeling approach. For feature engineering, we employed the Log-Normal Response Time Model for estimating latent person speed, and the Generalized…
Descriptors: Data Analysis, Competition, Classification, Prediction
Zhao, Yijun; Lackaye, Bryan; Dy, Jennifier G.; Brodley, Carla E. – International Educational Data Mining Society, 2020
Accurately predicting which students are best suited for graduate programs is beneficial to both students and colleges. In this paper, we propose a quantitative machine learning approach to predict an applicant's potential performance in the graduate program. Our work is based on a real world dataset consisting of MS in CS [Master of Science in…
Descriptors: Artificial Intelligence, College Admission, Masters Programs, Professional Education
Christie, S. Thomas; Jarratt, Daniel C.; Olson, Lukas A.; Taijala, Taavi T. – International Educational Data Mining Society, 2019
Schools across the United States suffer from low on-time graduation rates. Targeted interventions help at-risk students meet graduation requirements in a timely manner, but identifying these students takes time and practice, as warning signs are often context-specific and reflected in a combination of attendance, social, and academic signals…
Descriptors: Dropout Prevention, At Risk Students, Artificial Intelligence, Decision Support Systems
Doroudi, Shayan; Brunskill, Emma – Grantee Submission, 2017
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
Descriptors: Bayesian Statistics, Research Problems, Statistical Analysis, Models
Allen, Laura K.; McNamara, Danielle S. – International Educational Data Mining Society, 2015
The current study investigates the degree to which the lexical properties of students' essays can inform stealth assessments of their vocabulary knowledge. In particular, we used indices calculated with the natural language processing tool, TAALES, to predict students' performance on a measure of vocabulary knowledge. To this end, two corpora were…
Descriptors: Vocabulary, Knowledge Level, Models, Natural Language Processing
Streeter, Matthew – International Educational Data Mining Society, 2015
We show that student learning can be accurately modeled using a mixture of learning curves, each of which specifies error probability as a function of time. This approach generalizes Knowledge Tracing [7], which can be viewed as a mixture model in which the learning curves are step functions. We show that this generality yields order-of-magnitude…
Descriptors: Probability, Error Patterns, Learning Processes, Models
Van Inwegen, Eric G.; Adjei, Seth A.; Wang, Yan; Heffernan, Neil T. – International Educational Data Mining Society, 2015
User modelling algorithms such as Performance Factors Analysis and Knowledge Tracing seek to determine a student's knowledge state by analyzing (among other features) right and wrong answers. Anyone who has ever graded an assignment by hand knows that some answers are "more wrong" than others; i.e. they display less of an understanding…
Descriptors: Knowledge Level, Performance Factors, Error Patterns, Mathematics
Using Web-Based Collaborative Forecasting to Enhance Information Literacy and Disciplinary Knowledge
Buckley, Patrick; Doyle, Elaine – Interactive Learning Environments, 2016
This paper outlines how an existing collaborative forecasting tool called a prediction market (PM) can be integrated into an educational context to enhance information literacy skills and cognitive disciplinary knowledge. The paper makes a number of original contributions. First, it describes how this tool can be packaged as a pedagogical…
Descriptors: Prediction, Information Literacy, Information Skills, Decision Support Systems
Lalama, Susana M. – Action, Criticism, and Theory for Music Education, 2016
The purpose of this study was to explore connections among perceived caring climate, empathy, and student social behaviors in high school bands. Nine high school band directors (N = 9 schools), along with their students (N = 203), completed an electronic questionnaire for variables of caring climate, cognitive empathy, affective empathy, social…
Descriptors: Caring, Empathy, Educational Environment, Questionnaires
Strecht, Pedro; Cruz, Luís; Soares, Carlos; Mendes-Moreira, João; Abreu, Rui – International Educational Data Mining Society, 2015
Predicting the success or failure of a student in a course or program is a problem that has recently been addressed using data mining techniques. In this paper we evaluate some of the most popular classification and regression algorithms on this problem. We address two problems: prediction of approval/failure and prediction of grade. The former is…
Descriptors: Comparative Analysis, Classification, Regression (Statistics), Mathematics
Huang, Yun; González-Brenes, José P.; Kumar, Rohit; Brusilovsky, Peter – International Educational Data Mining Society, 2015
Latent variable models, such as the popular Knowledge Tracing method, are often used to enable adaptive tutoring systems to personalize education. However, finding optimal model parameters is usually a difficult non-convex optimization problem when considering latent variable models. Prior work has reported that latent variable models obtained…
Descriptors: Guidelines, Models, Prediction, Evaluation Methods
González-Brenes, José P.; Huang, Yun – International Educational Data Mining Society, 2015
Classification evaluation metrics are often used to evaluate adaptive tutoring systems-- programs that teach and adapt to humans. Unfortunately, it is not clear how intuitive these metrics are for practitioners with little machine learning background. Moreover, our experiments suggest that existing convention for evaluating tutoring systems may…
Descriptors: Intelligent Tutoring Systems, Evaluation Methods, Program Evaluation, Student Behavior