NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 13 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rohani, Narjes; Gal, Kobi; Gallagher, Michael; Manataki, Areti – International Educational Data Mining Society, 2023
Massive Open Online Courses (MOOCs) make high-quality learning accessible to students from all over the world. On the other hand, they are known to exhibit low student performance and high dropout rates. Early prediction of student performance in MOOCs can help teachers intervene in time in order to improve learners' future performance. This is…
Descriptors: Prediction, Academic Achievement, Health Education, Data Science
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Qian; Rangwala, Huzefa – International Educational Data Mining Society, 2020
Over the past decade, machine learning has become an integral part of educational technologies. With more and more applications such as students' performance prediction, course recommendation, dropout prediction and knowledge tracing relying upon machine learning models, there is increasing evidence and concerns about bias and unfairness of these…
Descriptors: Artificial Intelligence, Bias, Learning Analytics, Statistical Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wang, Yuancheng; Luo, Nanyu; Zhou, Jianjun – International Educational Data Mining Society, 2022
Doing assignments is a very important part of learning. Students' assignment submission time provides valuable information on study attitudes and habits which strongly correlate with academic performance. However, the number of assignments and their submission deadlines vary among university courses, making it hard to use assignment submission…
Descriptors: College Students, Assignments, Time, Scheduling
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wagner, Kerstin; Merceron, Agathe; Sauer, Petra; Pinkwart, Niels – International Educational Data Mining Society, 2023
In this paper, we present an extended evaluation of a course recommender system designed to support students who struggle in the first semesters of their studies and are at risk of dropping out. The system, which was developed in earlier work using a student-centered design and which is based on the explainable k-nearest neighbor algorithm,…
Descriptors: College Freshmen, At Risk Students, Dropouts, Dropout Programs
Mongkhonvanit, Kritphong; Kanopka, Klint; Lang, David – Grantee Submission, 2019
MOOCs and online courses have notoriously high attrition [1]. One challenge is that it can be difficult to tell if students fail to complete because of disinterest or because of course difficulty. Utilizing a Deep Knowledge Tracing framework, we account for student engagement by including course interaction covariates. With these, we find that we…
Descriptors: Online Courses, Large Group Instruction, Knowledge Level, Learner Engagement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Li, Hang; Ding, Wenbiao; Liu, Zitao – International Educational Data Mining Society, 2020
With the rapid emergence of K-12 online learning platforms, a new era of education has been opened up. It is crucial to have a dropout warning framework to preemptively identify K-12 students who are at risk of dropping out of the online courses. Prior researchers have focused on predicting dropout in Massive Open Online Courses (MOOCs), which…
Descriptors: At Risk Students, Online Courses, Elementary Secondary Education, Learning Modalities
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Christie, S. Thomas; Jarratt, Daniel C.; Olson, Lukas A.; Taijala, Taavi T. – International Educational Data Mining Society, 2019
Schools across the United States suffer from low on-time graduation rates. Targeted interventions help at-risk students meet graduation requirements in a timely manner, but identifying these students takes time and practice, as warning signs are often context-specific and reflected in a combination of attendance, social, and academic signals…
Descriptors: Dropout Prevention, At Risk Students, Artificial Intelligence, Decision Support Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Polyzou, Agoritsa; Karypis, George – International Educational Data Mining Society, 2018
Developing tools to support students and learning in a traditional or online setting is a significant task in today's educational environment. The initial steps towards enabling such technologies using machine learning techniques focused on predicting the student's performance in terms of the achieved grades. The disadvantage of these approaches…
Descriptors: Low Achievement, Predictor Variables, Classification, Student Characteristics
Lacefield, Warren E.; Applegate, E. Brooks – Online Submission, 2018
Accountability seems forever engrained into the K-12 environment, as has been the expectation of delivering quality education to school aged children and adolescents. Yet, repeated failure of this expectation has focused the public's and policy maker's attention on the limitations of major accountability systems. This paper explores applications…
Descriptors: Public Education, Data, Visual Aids, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pytlarz, Ian; Pu, Shi; Patel, Monal; Prabhu, Rajini – International Educational Data Mining Society, 2018
Identifying at-risk students at an early stage is a challenging task for colleges and universities. In this paper, we use students' oncampus network traffic volume to construct several useful features in predicting their first semester GPA. In particular, we build proxies for their attendance, class engagement, and out-of-class study hours based…
Descriptors: College Freshmen, Grade Point Average, At Risk Students, Academic Achievement
Chai, Kevin E. K.; Gibson, David – International Association for Development of the Information Society, 2015
Improving student retention is an important and challenging problem for universities. This paper reports on the development of a student attrition model for predicting which first year students are most at-risk of leaving at various points in time during their first semester of study. The objective of developing such a model is to assist…
Descriptors: Undergraduate Students, Student Attrition, Prediction, Models
DeRocchis, Anthony M.; Michalenko, Ashley; Boucheron, Laura E.; Stochaj, Steven J. – Grantee Submission, 2018
This Innovative Practice Category Work In Progress paper presents an application of machine learning and data mining to student performance data in an undergraduate electrical engineering program. We are developing an analytical approach to enhance retention in the program especially among underrepresented groups. Our approach will provide…
Descriptors: Engineering Education, Data Analysis, Undergraduate Students, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Essa, Alfred; Ayad, Hanan – Research in Learning Technology, 2012
The need to educate a competitive workforce is a global problem. In the US, for example, despite billions of dollars spent to improve the educational system, approximately 35% of students never finish high school. The drop rate among some demographic groups is as high as 50-60%. At the college level in the US only 30% of students graduate from…
Descriptors: Artificial Intelligence, Computer Graphics, Computer Interfaces, Statistical Analysis