ERIC Number: EJ1308859
Record Type: Journal
Publication Date: 2021-Sep
Pages: 16
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1360-2357
EISSN: N/A
Predicting Learners' Performance through Video Sequences Viewing Behavior Analysis Using Educational Data-Mining
El Aouifi, Houssam; El Hajji, Mohamed; Es-Saady, Youssef; Douzi, Hassan
Education and Information Technologies, v26 n5 p5799-5814 Sep 2021
This paper analyzes how learners interact with the pedagogical sequences of educational videos, and its effect on their performance. In this study, the suggested video courses are segmented on several pedagogical sequences. In fact, we're not focusing on the type of clicks made by learners, but we're concentrating on the pedagogical sequences in which those clicks were made. We focalize on the interpretation of the path followed by a learner watching an educational video, and the way they navigate the pedagogical sequences of that video, in order to predict whether a learner can pass or fail the video course. Learners' video clicks are collected and classified. We applied educational data mining technique using K-nearest Neighbours and Multilayer Perceptron algorithms to predict learners' performance. The classification results are acceptable, the kNN classifier achieves the best results with an average accuracy of 65.07%. The experimental result indicates that learners' performance could be predicted, we notice a correlation between video sequence viewing behavior and learning performances. This method may help instructors understand the way learners watch educational videos. It can be used for early detection of learners' video viewing behavior deviation and allow the instructor to provide well-timed, effective guidance.
Descriptors: Video Technology, Student Behavior, Prediction, Learning Analytics, Sequential Approach, Academic Achievement
Springer. Available from: Springer Nature. One New York Plaza, Suite 4600, New York, NY 10004. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-460-1700; e-mail: customerservice@springernature.com; Web site: https://bibliotheek.ehb.be:2123/
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A