Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 8 |
Descriptor
Medical Research | 8 |
Meta Analysis | 8 |
Network Analysis | 8 |
Comparative Analysis | 7 |
Outcomes of Treatment | 7 |
Drug Therapy | 4 |
Models | 4 |
Simulation | 4 |
Patients | 3 |
Bayesian Statistics | 2 |
Diseases | 2 |
More ▼ |
Source
Research Synthesis Methods | 8 |
Author
Dias, Sofia | 2 |
Leahy, Joy | 2 |
Walsh, Cathal | 2 |
Welton, Nicky J. | 2 |
Afdhal, Nezam | 1 |
Baker, Rose | 1 |
Bennetts, Margherita | 1 |
Boucher, Martin | 1 |
Bradbury, Naomi | 1 |
Béliveau, Audrey | 1 |
Cooper, Nicola | 1 |
More ▼ |
Publication Type
Journal Articles | 8 |
Reports - Research | 8 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Noma, Hisashi; Hamura, Yasuyuki; Sugasawa, Shonosuke; Furukawa, Toshi A. – Research Synthesis Methods, 2023
Network meta-analysis has played an important role in evidence-based medicine for assessing the comparative effectiveness of multiple available treatments. The prediction interval has been one of the standard outputs in recent network meta-analysis as an effective measure that enables simultaneous assessment of uncertainties in treatment effects…
Descriptors: Intervals, Meta Analysis, Evidence Based Practice, Comparative Analysis
Pedder, Hugo; Boucher, Martin; Dias, Sofia; Bennetts, Margherita; Welton, Nicky J. – Research Synthesis Methods, 2020
Time-course model-based network meta-analysis (MBNMA) has been proposed as a framework to combine treatment comparisons from a network of randomized controlled trials reporting outcomes at multiple time-points. This can explain heterogeneity/inconsistency that arises by pooling studies with different follow-up times and allow inclusion of studies…
Descriptors: Simulation, Randomized Controlled Trials, Meta Analysis, Comparative Analysis
Owen, Rhiannon K.; Bradbury, Naomi; Xin, Yiqiao; Cooper, Nicola; Sutton, Alex – Research Synthesis Methods, 2019
Background: Network meta-analysis (NMA) is a powerful analysis method used to identify the best treatments for a condition and is used extensively by health care decision makers. Although software routines exist for conducting NMA, they require considerable statistical programming expertise to use, which limits the number of researchers able to…
Descriptors: Network Analysis, Meta Analysis, Computer Software, Medical Research
Leahy, Joy; Walsh, Cathal – Research Synthesis Methods, 2019
If IPD is available for some or all trials in a network meta-analysis (NMA), then incorporating this IPD into an NMA is routinely considered to be preferable. However, the situation often arises where a researcher has IPD for trials concerning a particular treatment (eg, from a sponsor) but none for other trials. Therefore, one can reweight the…
Descriptors: Comparative Analysis, Meta Analysis, Bayesian Statistics, Network Analysis
Jackson, Dan; Veroniki, Areti Angeliki; Law, Martin; Tricco, Andrea C.; Baker, Rose – Research Synthesis Methods, 2017
Network meta-analysis is used to simultaneously compare multiple treatments in a single analysis. However, network meta-analyses may exhibit inconsistency, where direct and different forms of indirect evidence are not in agreement with each other, even after allowing for between-study heterogeneity. Models for network meta-analysis with random…
Descriptors: Meta Analysis, Network Analysis, Comparative Analysis, Outcomes of Treatment
Network Meta-Analysis of Disconnected Networks: How Dangerous Are Random Baseline Treatment Effects?
Béliveau, Audrey; Goring, Sarah; Platt, Robert W.; Gustafson, Paul – Research Synthesis Methods, 2017
In network meta-analysis, the use of fixed baseline treatment effects (a priori independent) in a contrast-based approach is regularly preferred to the use of random baseline treatment effects (a priori dependent). That is because, often, there is not a need to model baseline treatment effects, which carry the risk of model misspecification.…
Descriptors: Risk, Network Analysis, Meta Analysis, Outcomes of Treatment
Donegan, Sarah; Welton, Nicky J.; Tudur Smith, Catrin; D'Alessandro, Umberto; Dias, Sofia – Research Synthesis Methods, 2017
Background: Many reviews aim to compare numerous treatments and report results stratified by subgroups (eg, by disease severity). In such cases, a network meta-analysis model including treatment by covariate interactions can estimate the relative effects of all treatment pairings for each subgroup of patients. Two key assumptions underlie such…
Descriptors: Network Analysis, Meta Analysis, Outcomes of Treatment, Comparative Analysis
Leahy, Joy; O'Leary, Aisling; Afdhal, Nezam; Gray, Emma; Milligan, Scott; Wehmeyer, Malte H.; Walsh, Cathal – Research Synthesis Methods, 2018
The use of individual patient data (IPD) in network meta-analysis (NMA) is becoming increasingly popular. However, as most studies do not report IPD, most NMAs are performed using aggregate data for at least some, if not all, of the studies. We investigate the benefits of including varying proportions of IPD studies in an NMA. Several models have…
Descriptors: Patients, Medical Research, Meta Analysis, Network Analysis