NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 160 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hu, Yuanyuan; Donald, Claire; Giacaman, Nasser – International Journal of Artificial Intelligence in Education, 2023
This paper investigates using multi-label deep learning approach to extending the understanding of cognitive presence in MOOC discussions. Previous studies demonstrate the challenges of subjectivity in manual categorisation methods. Training automatic single-label classifiers may preserve this subjectivity. Using a triangulation approach, we…
Descriptors: Classification, MOOCs, Artificial Intelligence, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Yongtian Cheng; K. V. Petrides – Educational and Psychological Measurement, 2025
Psychologists are emphasizing the importance of predictive conclusions. Machine learning methods, such as supervised neural networks, have been used in psychological studies as they naturally fit prediction tasks. However, we are concerned about whether neural networks fitted with random datasets (i.e., datasets where there is no relationship…
Descriptors: Psychological Studies, Artificial Intelligence, Cognitive Processes, Predictive Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Yoon Lee; Gosia Migut; Marcus Specht – British Journal of Educational Technology, 2025
Learner behaviours often provide critical clues about learners' cognitive processes. However, the capacity of human intelligence to comprehend and intervene in learners' cognitive processes is often constrained by the subjective nature of human evaluation and the challenges of maintaining consistency and scalability. The recent widespread AI…
Descriptors: Artificial Intelligence, Cognitive Processes, Student Behavior, Cues
Peer reviewed Peer reviewed
Direct linkDirect link
Helene Ackermann; Anja Henke; Johann Chevalère; Hae Seon Yun; Verena V. Hafner; Niels Pinkwart; Rebecca Lazarides – npj Science of Learning, 2025
Rising interest in artificial intelligence in education reinforces the demand for evidence-based implementation. This study investigates how tutor agents' physical embodiment and anthropomorphism (student-reported sociability, animacy, agency, and disturbance) relate to affective (on-task enjoyment) and cognitive (task performance) learning within…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Animals, Human Body
Peer reviewed Peer reviewed
Direct linkDirect link
Yannik Fleischer; Susanne Podworny; Rolf Biehler – Statistics Education Research Journal, 2024
This study investigates how 11- to 12-year-old students construct data-based decision trees using data cards for classification purposes. We examine the students' heuristics and reasoning during this process. The research is based on an eight-week teaching unit during which students labeled data, built decision trees, and assessed them using test…
Descriptors: Decision Making, Data Use, Cognitive Processes, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Jiang, Shiyan; Qian, Yingxiao; Tang, Hengtao; Yalcinkaya, Rabia; Rosé, Carolyn P.; Chao, Jie; Finzer, William – Education and Information Technologies, 2023
As artificial intelligence (AI) technologies are increasingly pervasive in our daily lives, the need for students to understand the working mechanisms of AI technologies has become more urgent. Data modeling is an activity that has been proposed to engage students in reasoning about the working mechanism of AI technologies. While Computational…
Descriptors: Computation, Thinking Skills, Cognitive Processes, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Ann Musgrove; Jillian Powers; Mohammad Azhar; Cristine Yao – Contemporary Issues in Technology and Teacher Education (CITE Journal), 2024
This study examined how an online instructional module that included an unplugged robot design activity integrated computational thinking (CT), assistive technology (AT), and universal design principles into a preservice teacher education class. The research focused on how this module shaped understanding, attitudes, and comfort levels about…
Descriptors: Preservice Teacher Education, Preservice Teachers, Artificial Intelligence, Cognitive Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Luo, Zhenzhen; Zheng, Chaoyu; Gong, Jun; Chen, Shaolong; Luo, Yong; Yi, Yugen – Education and Information Technologies, 2023
Learning interest affects the way of learning and its process, which is an important factor that affects the learning effect. At present, students' learning interest in a teaching environment is mainly based on a traditional questionnaire or case analysis, which is not conducive for teachers to promptly access students' interest in class to…
Descriptors: Student Interests, Artificial Intelligence, Attention, Psychological Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Harris, Anthony M.; Eayrs, Joshua O.; Lavie, Nilli – Cognitive Research: Principles and Implications, 2023
Highly-automated technologies are increasingly incorporated into existing systems, for instance in advanced car models. Although highly automated modes permit non-driving activities (e.g. internet browsing), drivers are expected to reassume control upon a 'take over' signal from the automation. To assess a person's readiness for takeover,…
Descriptors: Eye Movements, Attention, Cognitive Processes, Reaction Time
Peer reviewed Peer reviewed
Direct linkDirect link
Unggi Lee; Yeil Jeong; Junbo Koh; Gyuri Byun; Yunseo Lee; Hyunwoong Lee; Seunmin Eun; Jewoong Moon; Cheolil Lim; Hyeoncheol Kim – Smart Learning Environments, 2024
This preliminary study explores how GPT-4 Vision (GPT-4V) technology can be integrated into teacher analytics through observational assessment, aiming to improve reflective teaching practice. Our study develops a Video-based Automatic Assessment System (VidAAS) powered by GPT-4V. This approach uses Generative Artificial Intelligence (GenAI) to…
Descriptors: Observation, Teaching Methods, Artificial Intelligence, Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Sijia Chen; Jan-Louis Kruger – Interpreter and Translator Trainer, 2024
Following a preliminary study that examined the potential effectiveness of a computer-assisted consecutive interpreting (CACI) mode, this paper presents a further trial of the CACI workflow. The workflow involves respeaking using speech recognition (SR) in phase I and production assisted by the SR text and its machine translation (MT) output in…
Descriptors: Computer Assisted Instruction, Artificial Intelligence, Translation, Speech Communication
Peer reviewed Peer reviewed
Direct linkDirect link
Dominic Lohr; Marc Berges; Abhishek Chugh; Michael Kohlhase; Dennis Müller – Journal of Computer Assisted Learning, 2025
Background: Over the past few decades, the process and methodology of automatic question generation (AQG) have undergone significant transformations. Recent progress in generative natural language models has opened up new potential in the generation of educational content. Objectives: This paper explores the potential of large language models…
Descriptors: Resource Units, Semantics, Automation, Questioning Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Zhi; Kong, Xi; Chen, Hao; Liu, Sannyuya; Yang, Zongkai – IEEE Transactions on Learning Technologies, 2023
In a massive open online courses (MOOCs) learning environment, it is essential to understand students' social knowledge constructs and critical thinking for instructors to design intervention strategies. The development of social knowledge constructs and critical thinking can be represented by cognitive presence, which is a primary component of…
Descriptors: MOOCs, Cognitive Processes, Students, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Takami, Kyosuke; Flanagan, Brendan; Dai, Yiling; Ogata, Hiroaki – Smart Learning Environments, 2023
In the age of artificial intelligence (AI), trust in AI systems is becoming more important. Explainable recommenders, which explain why an item is recommended, have recently been proposed in the field of learning technology to improve transparency, persuasiveness, and trustworthiness. However, the methods for generating explanations are limited…
Descriptors: Artificial Intelligence, Personality, Cognitive Processes, Public Health
Peer reviewed Peer reviewed
Direct linkDirect link
Xu Chen; Di Wu – IEEE Transactions on Learning Technologies, 2024
Generative artificial intelligence (AI) is widely recognized as one of the most influential technologies for the future, having sparked a paradigm shift in scientific research. The field of education has also been greatly impacted by this transformative technology, with researchers exploring the applications of generative AI, particularly ChatGPT,…
Descriptors: Automation, Multimedia Materials, Instructional Materials, Artificial Intelligence
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11