NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wan, Qian; Crossley, Scott; Banawan, Michelle; Balyan, Renu; Tian, Yu; McNamara, Danielle; Allen, Laura – International Educational Data Mining Society, 2021
The current study explores the ability to predict argumentative claims in structurally-annotated student essays to gain insights into the role of argumentation structure in the quality of persuasive writing. Our annotation scheme specified six types of argumentative components based on the well-established Toulmin's model of argumentation. We…
Descriptors: Essays, Persuasive Discourse, Automation, Identification
Panaite, Marilena; Ruseti, Stefan; Dascalu, Mihai; Balyan, Renu; McNamara, Danielle S.; Trausan-Matu, Stefan – Grantee Submission, 2019
Intelligence Tutoring Systems (ITSs) focus on promoting knowledge acquisition, while providing relevant feedback during students' practice. Self-explanation practice is an effective method used to help students understand complex texts by leveraging comprehension. Our aim is to introduce a deep learning neural model for automatically scoring…
Descriptors: Computer Assisted Testing, Scoring, Intelligent Tutoring Systems, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – International Journal of Artificial Intelligence in Education, 2020
For decades, educators have relied on readability metrics that tend to oversimplify dimensions of text difficulty. This study examines the potential of applying advanced artificial intelligence methods to the educational problem of assessing text difficulty. The combination of hierarchical machine learning and natural language processing (NLP) is…
Descriptors: Natural Language Processing, Artificial Intelligence, Man Machine Systems, Classification
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2020
For decades, educators have relied on readability metrics that tend to oversimplify dimensions of text difficulty. This study examines the potential of applying advanced artificial intelligence methods to the educational problem of assessing text difficulty. The combination of hierarchical machine learning and natural language processing (NLP) is…
Descriptors: Natural Language Processing, Artificial Intelligence, Man Machine Systems, Classification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2018
While hierarchical machine learning approaches have been used to classify texts into different content areas, this approach has, to our knowledge, not been used in the automated assessment of text difficulty. This study compared the accuracy of four classification machine learning approaches (flat, one-vs-one, one-vs-all, and hierarchical) using…
Descriptors: Artificial Intelligence, Classification, Comparative Analysis, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2017
This study examined how machine learning and natural language processing (NLP) techniques can be leveraged to assess the interpretive behavior that is required for successful literary text comprehension. We compared the accuracy of seven different machine learning classification algorithms in predicting human ratings of student essays about…
Descriptors: Artificial Intelligence, Natural Language Processing, Reading Comprehension, Literature
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – International Educational Data Mining Society, 2017
This study examined how machine learning and natural language processing (NLP) techniques can be leveraged to assess the interpretive behavior that is required for successful literary text comprehension. We compared the accuracy of seven different machine learning classification algorithms in predicting human ratings of student essays about…
Descriptors: Artificial Intelligence, Natural Language Processing, Reading Comprehension, Literature
McNamara, Danielle S.; Roscoe, Rod; Allen, Laura; Balyan, Renu; McCarthy, Kathryn S. – Grantee Submission, 2019
Literacy is a critically important and contemporary issue for educators, scientists, and politicians. Efforts to overcome the challenges associated with illiteracy, and the subsequent development of literate societies, are closely related to those of poverty reduction and sustainable human development. In this paper, the authors examine literacy…
Descriptors: Literacy, Reading Comprehension, Language Processing, Discourse Analysis
Balyan, Renu; Crossley, Scott A.; Brown, William, III; Karter, Andrew J.; McNamara, Danielle S.; Liu, Jennifer Y.; Lyles, Courtney R.; Schillinger, Dean – Grantee Submission, 2019
Limited health literacy is a barrier to optimal healthcare delivery and outcomes. Current measures requiring patients to self-report limitations are time-consuming and may be considered intrusive by some. This makes widespread classification of patient health literacy challenging. The objective of this study was to develop and validate…
Descriptors: Patients, Literacy, Health Services, Profiles
Schillinger, Dean; Balyan, Renu; Crossley, Scott A.; McNamara, Danielle S.; Liu, Jennifer Y.; Karter, Andrew J. – Grantee Submission, 2020
Objective: To develop novel, scalable, and valid literacy profiles for identifying limited health literacy patients by harnessing natural language processing. Data Source: With respect to the linguistic content, we analyzed 283 216 secure messages sent by 6941 diabetes patients to physicians within an integrated system's electronic portal.…
Descriptors: Literacy, Profiles, Computational Linguistics, Syntax