ERIC Number: EJ1383210
Record Type: Journal
Publication Date: 2023-Jul
Pages: 32
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1360-2357
EISSN: EISSN-1573-7608
Available Date: N/A
Towards Intelligent E-Learning Systems
Liu, Mengchi; Yu, Dongmei
Education and Information Technologies, v28 n7 p7845-7876 Jul 2023
The prevalence of e-learning systems has made educational resources more accessible, interactive and effective to learners without the geographic and temporal boundaries. However, as the number of users increases and the volume of data grows, current e-learning systems face some technical and pedagogical challenges. This paper provides a comprehensive review on the efforts of applying new information and communication technologies to improve e-learning services. We first systematically investigate current e-learning systems in terms of their classification, architecture, functions, challenges, and current trends. We then present a general architecture for big data based e-learning systems to meet the ever-growing demand for e-learning. We also describe how to use data generated in big data based e-learning systems to support more flexible and customized course delivery and personalized learning.
Descriptors: Electronic Learning, Educational Technology, Literature Reviews, Client Server Architecture, Data Use
Springer. Available from: Springer Nature. One New York Plaza, Suite 4600, New York, NY 10004. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-460-1700; e-mail: customerservice@springernature.com; Web site: https://bibliotheek.ehb.be:2123/
Publication Type: Journal Articles; Reports - Evaluative
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A