Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 1 |
Descriptor
Source
Journal of Chemical Education | 15 |
Science Teacher | 6 |
Journal of Science Education… | 1 |
Research in Science Education | 1 |
School Science Review | 1 |
Author
Sumrall, William J. | 2 |
Ault, Addison | 1 |
Barakat, Hala | 1 |
Bergandine, David R. | 1 |
Bogner, Donna, Ed. | 1 |
BouJaoude, Saouma | 1 |
Brooks, David W. | 1 |
Clift, Philip A. | 1 |
Crippen, Kent J. | 1 |
Crossno, S. K. | 1 |
Curtright, Robert D. | 1 |
More ▼ |
Publication Type
Guides - Classroom - Teacher | 25 |
Journal Articles | 24 |
Reports - Descriptive | 5 |
Guides - Classroom - Learner | 1 |
Reports - Research | 1 |
Education Level
High Schools | 1 |
Higher Education | 1 |
Postsecondary Education | 1 |
Secondary Education | 1 |
Audience
Practitioners | 6 |
Teachers | 6 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Eldridge, Daniel S. – Journal of Chemical Education, 2015
There is an increasing focus across all educational sectors to ensure that learning objectives are aligned with learning activities and assessments. An attractive approach previously published is that of curriculum alignment projects. This paper discusses the use of the fun and famous "Elephant's Toothpaste" experiment as a customizable…
Descriptors: Curriculum Development, Alignment (Education), Science Projects, Learning Activities

Ault, Addison – Journal of Chemical Education, 2001
Discusses how chemists describe an amount of material and provides a visual representation for the solution of typical stoichiometry problems. (YDS)
Descriptors: Chemistry, Higher Education, Problem Solving, Science Education

Tykodi, R. J. – Journal of Chemical Education, 1987
Presented are three methods for dealing with chemical problems involving reaction stoichiometry. (RH)
Descriptors: Chemical Reactions, Chemistry, College Science, Problem Solving

BouJaoude, Saouma; Barakat, Hala – School Science Review, 2000
Identifies the misunderstandings and problem-solving strategies of secondary students when solving stoichiometry problems. (Author/CCM)
Descriptors: Chemistry, Misconceptions, Problem Solving, Science Education

Koch, Helmut – Science Teacher, 1995
Descriptors: Chemistry, Higher Education, Science Instruction, Scientific Concepts

Kumar, David D.; And Others – Journal of Science Education and Technology, 1994
Investigates HyperCard as a tool for assessment in science education and determines whether or not a HyperCard assessment instrument could differentiate between expert and novice student performance on balancing stoichiometric equations in science education. (ZWH)
Descriptors: Chemistry, Evaluation, High Schools, Measures (Individuals)

Crossno, S. K.; And Others – Journal of Chemical Education, 1996
Presents experiments involving the analysis of commercial products such as carbonated beverages and antacids that illustrate the principles of acid-base reactions and present interesting problems in stoichiometry for students. (JRH)
Descriptors: Chemical Analysis, Chemical Reactions, Chemistry, Higher Education

Clift, Philip A. – Science Teacher, 1992
Describes a demonstration of the decomposition of hydrogen peroxide to provide an interesting, quantitative illustration of the stoichiometric relationship between the decomposition of hydrogen peroxide and the formation of oxygen gas. This 10-minute demonstration uses ordinary hydrogen peroxide and yeast that can be purchased in a supermarket.…
Descriptors: Chemistry, Demonstrations (Educational), Science Education, Science Instruction

Missen, Ronald W.; Smith, William R. – Journal of Chemical Education, 1997
Shows how the computer software programs Mathematica and Maple can be used to obtain chemical equations to represent the stoichiometry of a reacting system. Specific examples are included. Contains 10 references. (DKM)
Descriptors: Algebra, Chemical Reactions, Chemistry, Computer Software

Fortman, John J. – Journal of Chemical Education, 1994
Pictorial analogies that demonstrate concepts of amounts allow instructors to teach that in stoichiometric problems, the number--or moles--of molecules of a chemical is what matters, even though it must be measured in masses or volumes. Analogies to stoichiometric relationships include the ratio of four wheels to one body in making wagons and…
Descriptors: Chemical Nomenclature, Chemistry, Higher Education, Instructional Materials

Milne, Robert W. – Journal of Chemical Education, 1999
Describes a low-cost activity designed to help students visualize both the kinetic and the stoichiometric nature of chemical reactions at the particle level, by creating a flip book. Suggests ideas for evaluation of student work, and extension activities. (WRM)
Descriptors: Chemical Reactions, Chemistry, Kinetics, Science Activities

Crippen, Kent J.; Curtright, Robert D.; Brooks, David W. – Science Teacher, 2000
The abstract nature of the mole and its applications to problem solving make learning the concept difficult for students, and teaching the concept challenging for teachers. Presents activities that use concept maps and graphing calculators as tools for solving mole problems. (ASK)
Descriptors: Chemistry, Concept Mapping, Educational Technology, Elementary Secondary Education

Rohrig, Brian – Journal of Chemical Education, 2000
Presents an activity that is suitable for a high school chemistry or introductory college chemistry lab in which students create their own Fizzie-style carbonated beverage and use stoichiometry to calculate the correct mix of citric acid and baking soda. (Author/ASK)
Descriptors: Chemical Reactions, Chemistry, High Schools, Higher Education

Kashmar, Richard J. – Journal of Chemical Education, 1997
Describes a method for illustrating the particulate and dynamic nature of chemical reactions that uses cut-out circles on the overhead projector. (JRH)
Descriptors: Chemical Reactions, Educational Strategies, Higher Education, Models

Krieger, Carla R. – Journal of Chemical Education, 1997
Describes the use of Moe's Mall, a locational device designed to be used by learners, as a simple algorithm for solving mole-based exercises efficiently and accurately using dimensional analysis. (DDR)
Descriptors: Algorithms, Chemistry, Cognitive Structures, Educational Practices
Previous Page | Next Page ยป
Pages: 1 | 2