ERIC Number: EJ1212477
Record Type: Journal
Publication Date: 2019
Pages: 11
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1939-1382
EISSN: N/A
Available Date: N/A
Using Machine Learning to Detect 'Multiple-Account' Cheating and Analyze the Influence of Student and Problem Features
Ruiperez-Valiente, Jose A.; Munoz-Merino, Pedro J.; Alexandron, Giora; Pritchard, David E.
IEEE Transactions on Learning Technologies, v12 n1 p112-122 Jan-Mar 2019
One of the reported methods of cheating in online environments in the literature is CAMEO (Copying Answers using Multiple Existences Online), where harvesting accounts are used to obtain correct answers that are later submitted in the master account which gives the student credit to obtain a certificate. In previous research, we developed an algorithm to identify and label submissions that were cheated using the CAMEO method; this algorithm relied on the IP of the submissions. In this study, we use this tagged sample of submissions to i) compare the influence of student and problems characteristics on CAMEO and ii) build a random forest classifier that detects submissions as CAMEO without relying on IP, achieving sensitivity and specificity levels of 0.966 and 0.996, respectively. Finally, we analyze the importance of the different features of the model finding that student features are the most important variables towards the correct classification of CAMEO submissions, concluding also that student features have more influence on CAMEO than problem features.
Descriptors: Computer Assisted Testing, Tests, Online Courses, Identification, Cheating, Mathematics, Data Collection, Classification, Student Characteristics, Introductory Courses, Physics, College Students
Institute of Electrical and Electronics Engineers, Inc. 445 Hoes Lane, Piscataway, NJ 08854. Tel: 732-981-0060; Web site: http://bibliotheek.ehb.be:2578/xpl/RecentIssue.jsp?punumber=4620076
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Identifiers - Location: Massachusetts
Grant or Contract Numbers: N/A
Author Affiliations: N/A