NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1403770
Record Type: Journal
Publication Date: 2023
Pages: 19
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: EISSN-2196-7091
Available Date: N/A
Personality-Based Tailored Explainable Recommendation for Trustworthy Smart Learning System in the Age of Artificial Intelligence
Takami, Kyosuke; Flanagan, Brendan; Dai, Yiling; Ogata, Hiroaki
Smart Learning Environments, v10 Article 65 2023
In the age of artificial intelligence (AI), trust in AI systems is becoming more important. Explainable recommenders, which explain why an item is recommended, have recently been proposed in the field of learning technology to improve transparency, persuasiveness, and trustworthiness. However, the methods for generating explanations are limited and do not consider the learner's cognitive perceptions or personality. This study draws inspiration from tailored intervention research in public health and investigates the effectiveness of personality-based tailored explanations by implementing them for the recommended quizzes in an explainable recommender system. High school students (n = 217) were clustered into three distinct profiles labeled Diligent (n = 77), Fearful (n = 72), and Agreeable (n = 68), based on the Big Five personality traits. The students were divided into a tailored intervention group (n = 106) and a control group (n = 111). In the tailored intervention group, personalized explanations for recommended quizzes were provided based on student profiles, with explanations based on quiz characteristics. In the control group, only non-personalized explanations based on quiz characteristics were provided. An 18-day A/B experiment showed that the tailored intervention group had significantly higher recommendation usage than the control group. These results suggest that personality-based tailored explanations with a recommender approach are effective for e-learning engagement and imply improved trustworthiness of AI learning systems.
Springer. Available from: Springer Nature. One New York Plaza, Suite 4600, New York, NY 10004. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-460-1700; e-mail: customerservice@springernature.com; Web site: https://bibliotheek.ehb.be:2123/
Publication Type: Journal Articles; Reports - Research
Education Level: High Schools; Secondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A