NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 41 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Okan Bulut; Tarid Wongvorachan; Surina He; Soo Lee – Discover Education, 2024
Despite its proven success in various fields such as engineering, business, and healthcare, human-machine collaboration in education remains relatively unexplored. This study aims to highlight the advantages of human-machine collaboration for improving the efficiency and accuracy of decision-making processes in educational settings. High school…
Descriptors: High School Students, Dropouts, Identification, Man Machine Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Shiyi Liu; Juan Zheng; Tingting Wang; Zeda Xu; Jie Chao; Shiyan Jiang – AERA Online Paper Repository, 2024
This study introduces a novel approach for predicting student engagement levels in a language-based AI curriculum. The curriculum was integrated into English Language Arts classrooms, in which 106 students from five classes participated five web-based machine learning and text mining modules for 2 weeks. Sentiment and categorical analyses,…
Descriptors: Learner Engagement, Artificial Intelligence, Technology Uses in Education, Language Arts
Peer reviewed Peer reviewed
Direct linkDirect link
Tao Huang; Jing Geng; Yuxia Chen; Han Wang; Huali Yang; Shengze Hu – Education and Information Technologies, 2024
Digital technology is profoundly transforming various aspects of life, thus highlighting the need to enhance digital literacy on a national scale. In primary and secondary schools, artificial intelligence (AI) education plays a pivotal role in fostering digital literacy. To comprehensively investigate the variables influencing AI education in…
Descriptors: Artificial Intelligence, Elementary Schools, Secondary Schools, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wudhijaya Philuek – Asian Journal of Education and Training, 2024
The objectives of this research were 1) to study the problems of stress and depression among Grade 12 students; 2) to investigate the machine learning technique in analyzing and predicting stress, depression, and academic performance among Grade 12 students; and 3) to evaluate the stress and depression prediction platform. Students from schools in…
Descriptors: Artificial Intelligence, Stress Variables, Depression (Psychology), Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Chenglu Li; Wanli Xing; Walter Leite – Interactive Learning Environments, 2024
As instruction shifts away from traditional approaches, online learning has grown in popularity in K-12 and higher education. Artificial intelligence (AI) and learning analytics methods such as machine learning have been used by educational scholars to support online learners on a large scale. However, the fairness of AI prediction in educational…
Descriptors: Artificial Intelligence, Prediction, Mathematics Achievement, Algorithms
Akmanchi, Suchitra; Bird, Kelli A.; Castleman, Benjamin L. – Annenberg Institute for School Reform at Brown University, 2023
Prediction algorithms are used across public policy domains to aid in the identification of at-risk individuals and guide service provision or resource allocation. While growing research has investigated concerns of algorithmic bias, much less research has compared algorithmically-driven targeting to the counterfactual: human prediction. We…
Descriptors: Academic Advising, Artificial Intelligence, Algorithms, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Zexuan Pan; Maria Cutumisu – AERA Online Paper Repository, 2023
Computational thinking (CT) is a fundamental ability for learners in today's society. Although CT assessments and interventions have been studied widely, little is known about CT predictions. This study predicted students' CT achievement in the ICILS 2018 using five machine learning models. These models were trained on the data from five European…
Descriptors: Computation, Thinking Skills, Artificial Intelligence, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shakya, Anup; Rus, Vasile; Venugopal, Deepak – International Educational Data Mining Society, 2023
Understanding a student's problem-solving strategy can have a significant impact on effective math learning using Intelligent Tutoring Systems (ITSs) and Adaptive Instructional Systems (AISs). For instance, the ITS/AIS can better personalize itself to correct specific misconceptions that are indicated by incorrect strategies, specific problems can…
Descriptors: Equal Education, Mathematics Education, Word Problems (Mathematics), Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Asselman, Amal; Khaldi, Mohamed; Aammou, Souhaib – Interactive Learning Environments, 2023
Performance Factors Analysis (PFA) is considered one of the most important Knowledge Tracing (KT) approaches used for constructing adaptive educational hypermedia systems. It has shown a high prediction accuracy against many other KT approaches. While, the desire to estimate more accurately the student level leads researchers to enhance PFA by…
Descriptors: Algorithms, Artificial Intelligence, Factor Analysis, Student Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Jiang, Shiyan; Nocera, Amato; Tatar, Cansu; Yoder, Michael Miller; Chao, Jie; Wiedemann, Kenia; Finzer, William; Rosé, Carolyn P. – British Journal of Educational Technology, 2022
To date, many AI initiatives (eg, AI4K12, CS for All) developed standards and frameworks as guidance for educators to create accessible and engaging Artificial Intelligence (AI) learning experiences for K-12 students. These efforts revealed a significant need to prepare youth to gain a fundamental understanding of how intelligence is created,…
Descriptors: High School Students, Data, Artificial Intelligence, Mathematical Models
Peer reviewed Peer reviewed
Direct linkDirect link
Wyness, Gill; Macmillan, Lindsey; Anders, Jake; Dilnot, Catherine – Education Economics, 2023
Students in the UK apply to university with teacher-predicted examination grades, rather than actual results. These predictions have been shown to be inaccurate, and to favour certain groups, leading to concerns about teacher bias. We ask whether it is possible to improve on the accuracy of teachers' predictions by predicting pupil achievement…
Descriptors: Foreign Countries, Prediction, Grades (Scholastic), Expectation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bernardo, Allan B. I.; Cordel, Macario O., II; Lapinid, Minie Rose C.; Teves, Jude Michael M.; Yap, Sashmir A.; Chua, Unisse C. – Journal of Intelligence, 2022
Filipino students performed poorly in the 2018 Programme for International Student Assessment (PISA) mathematics assessment, with more than 50% obtaining scores below the lowest proficiency level. Students from public schools also performed worse compared to their private school counterparts. We used machine learning approaches, specifically…
Descriptors: Public Schools, Private Schools, Low Achievement, Mathematics Achievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hutt, Stephen; Ocumpaugh, Jaclyn; Ma, Juliana; Andres, Alexandra L.; Bosch, Nigel; Paquette, Luc; Biswas, Gautam; Baker, Ryan S. – International Educational Data Mining Society, 2021
Self-regulated learning (SRL) is a critical 21st -century skill. In this paper, we examine SRL through the lens of the searching, monitoring, assessing, rehearsing, and translating (SMART) schema for learning operations. We use microanalysis to measure SRL behaviors as students interact with a computer-based learning environment, Betty's Brain. We…
Descriptors: Models, Self Control, Learning Strategies, Student Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Mangino, Anthony A.; Smith, Kendall A.; Finch, W. Holmes; Hernández-Finch, Maria E. – Measurement and Evaluation in Counseling and Development, 2022
A number of machine learning methods can be employed in the prediction of suicide attempts. However, many models do not predict new cases well in cases with unbalanced data. The present study improved prediction of suicide attempts via the use of a generative adversarial network.
Descriptors: Prediction, Suicide, Artificial Intelligence, Networks
Peer reviewed Peer reviewed
Direct linkDirect link
Yousafzai, Bashir Khan; Hayat, Maqsood; Afzal, Sher – Education and Information Technologies, 2020
The presented work is a student marks and grade prediction system using supervised machine learning techniques, the system is developed on the historic performance of students. The data used in this research is collected from Federal Board of Intermediate and Secondary Education Islamabad Pakistan, there are 7 regions in FBISE i.e. Punjab, Sindh,…
Descriptors: Artificial Intelligence, Foreign Countries, Prediction, Grades (Scholastic)
Previous Page | Next Page »
Pages: 1  |  2  |  3