NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 47 results Save | Export
Kelli Bird – Association for Institutional Research, 2023
Colleges are increasingly turning to predictive analytics to identify "at-risk" students in order to target additional supports. While recent research demonstrates that the types of prediction models in use are reasonably accurate at identifying students who will eventually succeed or not, there are several other considerations for the…
Descriptors: Prediction, Data Analysis, Artificial Intelligence, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Patricia Everaert; Evelien Opdecam; Hans van der Heijden – Accounting Education, 2024
In this paper, we examine whether early warning signals from accounting courses (such as early engagement and early formative performance) are predictive of first-year progression outcomes, and whether this data is more predictive than personal data (such as gender and prior achievement). Using a machine learning approach, results from a sample of…
Descriptors: Accounting, Business Education, Artificial Intelligence, College Freshmen
Peer reviewed Peer reviewed
Direct linkDirect link
Huo, Huade; Cui, Jiashan; Hein, Sarah; Padgett, Zoe; Ossolinski, Mark; Raim, Ruth; Zhang, Jijun – Journal of College Student Retention: Research, Theory & Practice, 2023
Student attrition represents one of the greatest challenges facing U.S. postsecondary institutions. Approximately 40 percent of students seeking a bachelor's degree do not graduate within 6 years; among nontraditional students, who make up half of the undergraduate population, dropout rates are even higher. In this study, we developed a machine…
Descriptors: Student Attrition, Postsecondary Education, Nontraditional Students, Dropout Rate
Peer reviewed Peer reviewed
Direct linkDirect link
Talamás-Carvajal, Juan Andrés; Ceballos, Héctor G. – Education and Information Technologies, 2023
Early dropout of students is one of the bigger problems that universities face currently. Several machine learning techniques have been used for detecting students at risk of dropout. By using sociodemographic data and qualifications of the previous level, the accuracy of these predictive models is good enough for implementing retention programs.…
Descriptors: College Students, Dropout Prevention, At Risk Students, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Albreiki, Balqis – International Journal of Educational Technology in Higher Education, 2022
Higher education institutions often struggle with increased dropout rates, academic underachievement, and delayed graduations. One way in which these challenges can potentially be addressed is by better leveraging the student data stored in institutional databases and online learning platforms to predict students' academic performance early using…
Descriptors: Automation, Remedial Instruction, At Risk Students, College Students
Peer reviewed Peer reviewed
Direct linkDirect link
Paul Prinsloo; Mohammad Khalil; Sharon Slade – British Journal of Educational Technology, 2024
Students' physical and digital lives are increasingly entangled. It is difficult to separate students' "digital" well-being from their offline well-being given that artificial intelligence increasingly shapes both. Within the context of education's fiduciary and moral duty to ensure safe, appropriate and effective digital learning spaces…
Descriptors: Educational Technology, Technology Uses in Education, Well Being, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chuan Cai; Adam Fleischhacker – Journal of Educational Data Mining, 2024
We propose a novel approach to address the issue of college student attrition by developing a hybrid model that combines a structural neural network with a piecewise exponential model. This hybrid model not only shows the potential to robustly identify students who are at high risk of dropout, but also provides insights into which factors are most…
Descriptors: College Students, Student Attrition, Dropouts, Potential Dropouts
Peer reviewed Peer reviewed
Direct linkDirect link
Marcell Nagy; Roland Molontay – International Journal of Artificial Intelligence in Education, 2024
Student drop-out is one of the most burning issues in STEM higher education, which induces considerable social and economic costs. Using machine learning tools for the early identification of students at risk of dropping out has gained a lot of interest recently. However, there has been little discussion on dropout prediction using interpretable…
Descriptors: Dropout Characteristics, Dropout Research, Intervention, At Risk Students
Peer reviewed Peer reviewed
Direct linkDirect link
Shiao, Yi-Tzone; Chen, Cheng-Huan; Wu, Ke-Fei; Chen, Bae-Ling; Chou, Yu-Hui; Wu, Trong-Neng – Smart Learning Environments, 2023
In recent years, initiatives and the resulting application of precision education have been applied with increasing frequency in Taiwan; the accompanying discourse has focused on identifying potential applications for artificial intelligence and how to use learning analytics to improve teaching quality and learning outcomes. This study used the…
Descriptors: Foreign Countries, Dropout Prevention, Models, Sustainability
Peer reviewed Peer reviewed
Direct linkDirect link
Harsimran Singh; Banipreet Kaur; Arun Sharma; Ajeet Singh – Education and Information Technologies, 2024
Today, the main aim of educational institutes is to provide a high level of education to students, as career selection is one of the most important and quite difficult decisions for learners, so it is essential to examine students' capabilities and interests. Higher education institutions frequently face higher dropout rates, low academic…
Descriptors: College Students, At Risk Students, Academic Achievement, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
D. V. D. S. Abeysinghe; M. S. D. Fernando – IAFOR Journal of Education, 2024
"Education is the key to success," one of the most heard motivational statements by all of us. People engage in education at different phases of our lives in various forms. Among them, university education plays a vital role in our academic and professional lives. During university education many undergraduates will face several…
Descriptors: Models, At Risk Students, Mentors, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Van Petegem, Charlotte; Deconinck, Louise; Mourisse, Dieter; Maertens, Rien; Strijbol, Niko; Dhoedt, Bart; De Wever, Bram; Dawyndt, Peter; Mesuere, Bart – Journal of Educational Computing Research, 2023
We present a privacy-friendly early-detection framework to identify students at risk of failing in introductory programming courses at university. The framework was validated for two different courses with annual editions taken by higher education students (N = 2 080) and was found to be highly accurate and robust against variation in course…
Descriptors: Pass Fail Grading, At Risk Students, Introductory Courses, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Cheng-Huan; Yang, Stephen J. H.; Weng, Jian-Xuan; Ogata, Hiroaki; Su, Chien-Yuan – Australasian Journal of Educational Technology, 2021
Providing early predictions of academic performance is necessary for identifying at-risk students and subsequently providing them with timely intervention for critical factors affecting their academic performance. Although e-book systems are often used to provide students with teaching/learning materials in university courses, seldom has research…
Descriptors: At Risk Students, Electronic Publishing, Student Behavior, Artificial Intelligence
Nazempour, Rezvan – ProQuest LLC, 2023
Educational Data Mining (EDM) is an emerging field that aims to better understand students' behavior patterns and learning environments by employing statistical and machine learning methods to analyze large repositories of educational data. Analysis of variable data in the early stages of a course might be used to develop a comprehensive…
Descriptors: Artificial Intelligence, Outcomes of Education, Electronic Learning, Educational Environment
Peer reviewed Peer reviewed
Direct linkDirect link
John Pace; John Hansen; John Stewart – Physical Review Physics Education Research, 2024
Machine learning models were constructed to predict student performance in an introductory mechanics class at a large land-grant university in the United States using data from 2061 students. Students were classified as either being at risk of failing the course (earning a D or F) or not at risk (earning an A, B, or C). The models focused on…
Descriptors: Artificial Intelligence, Identification, At Risk Students, Physics
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4