NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)3
Since 2006 (last 20 years)7
Publication Type
Journal Articles8
Reports - Descriptive8
Guides - Classroom - Teacher2
Audience
Teachers4
Location
Italy1
Japan1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Eriksen, Kristina; Nielsen, Bjarne E.; Pittelkow, Michael – Journal of Chemical Education, 2020
We present a simple procedure to make an augmented reality app to visualize any chemical 3D model. The molecular structure may be based on crystallographic data or from computational modeling. This guide is made in such a way that no programming skills are needed, and the procedure uses free software and provides a way to visualize 3D structures…
Descriptors: Chemistry, Molecular Structure, Science Instruction, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Dean, Natalie L.; Ewan, Corrina; Braden, Douglas; McIndoe, J. Scott – Journal of Chemical Education, 2019
Comprehension of the 3D structure of objects usually represented in 2D is a critical part of understanding molecular geometries. The frequency with which students actually get hands-on with 3D molecular structures is often limited to a singular laboratory session. We sought to develop a set of molecular shapes that were inexpensive enough not only…
Descriptors: Science Instruction, Chemistry, Molecular Structure, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Philippof, Joanna; Seraphin, Kanesa Duncan; Seki, Jennifer; Kaupp, Lauren – Science Teacher, 2015
The periodic table does more than provide information about the elements. The periodic table also helps us make predictions about how the elements behave. Understanding the atomic structure of matter and periodic properties of the elements, as shown in the periodic table, is fundamental to many scientific disciplines. Unfortunately, high school…
Descriptors: Chemistry, Science Instruction, Secondary School Science, High School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Cipolla, Laura; Ferrari, Lia A. – Journal of Chemical Education, 2016
A hands-on approach to introduce the chemical elements and the atomic structure to elementary/middle school students is described. The proposed classroom activity presents Bohr models of atoms using common and inexpensive materials, such as nested plastic balls, colored modeling clay, and small-sized pasta (or small plastic beads).
Descriptors: Molecular Structure, Models, Science Materials, Hands on Science
Peer reviewed Peer reviewed
Direct linkDirect link
Caine, Massimo; Horié, Ninon; Zuchuat, Sandrine; Weber, Aurélia; Ducret, Verena; Linder, Patrick; Perron, Karl – Science Activities: Classroom Projects and Curriculum Ideas, 2015
More than 60 years have passed since the work of Rosalind Franklin, James Watson, and Francis Crick led to the discovery of the 3D-DNA double-helix structure. Nowadays, due to the simple and elegant architecture of its double helix, the structure of DNA is widely known. The biological role of the DNA molecule (e.g., genetic information), however,…
Descriptors: Science Instruction, Biology, Genetics, Hands on Science
Peer reviewed Peer reviewed
Direct linkDirect link
Hitt, Austin Manning; Townsend, J. Scott – Science Activities: Classroom Projects and Curriculum Ideas, 2015
Elementary, middle-level, and high school science teachers commonly find their students have misconceptions about heat and temperature. Unfortunately, student misconceptions are difficult to modify or change and can prevent students from learning the accurate scientific explanation. In order to improve our students' understanding of heat and…
Descriptors: Science Instruction, Scientific Concepts, Misconceptions, Heat
Peer reviewed Peer reviewed
Direct linkDirect link
Bonney, Kevin M. – Journal of College Science Teaching, 2014
This article describes an interrupted case study that intersperses information about diffusion and osmosis with content review and knowledge application questions, as well as a simple experiment that can be conducted without the use of a laboratory. The case study was developed for use in an introductory undergraduate biology course. The case…
Descriptors: Science Instruction, College Science, Case Studies, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Imai, Izumi; Kamata, Masahiro; Miura, Naosuke – Physics Education, 2003
Kinetic models of a gas can be hard for students to understand. Typical tools do not display events at the microscopic level, yet computer simulations of the molecules lack a hands-on aspect. Here a new tool is described that combines the squeezing of a syringe with a computer simulation, and it is shown that this has worked well in class for both…
Descriptors: Mechanics (Physics), Computer Simulation, Molecular Structure, Kinetics