NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Moonhyun Han; Janghee Uhm – International Journal of Science and Mathematics Education, 2024
This qualitative case study investigated how computational models can help students engage in scientific practice and influence their emotional, epistemic, and conceptual aspects. Twenty-four sixth-graders were guided to conduct scientific practices as they predicted and modified the computational models on food web using StarLogo Nova. Three…
Descriptors: Grade 6, Thinking Skills, Computation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Jewsbury, Paul A.; van Rijn, Peter W. – Journal of Educational and Behavioral Statistics, 2020
In large-scale educational assessment data consistent with a simple-structure multidimensional item response theory (MIRT) model, where every item measures only one latent variable, separate unidimensional item response theory (UIRT) models for each latent variable are often calibrated for practical reasons. While this approach can be valid for…
Descriptors: Item Response Theory, Computation, Test Items, Adaptive Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Jacob, Sharin Rawhiya; Montoya, Jonathan; Nguyen, Ha; Richardson, Debra; Warschauer, Mark – ACM Transactions on Computing Education, 2022
Developing student interest is critical to supporting student learning in computer science. Research indicates that student interest is a key predictor of persistence and achievement. While there is a growing body of work on developing computing identities for diverse students, little research focuses on early exposure to develop multilingual…
Descriptors: Multilingualism, Student Development, Self Concept, Computer Science
Peer reviewed Peer reviewed
Direct linkDirect link
Murphy, Daniel L.; Beretvas, S. Natasha – Applied Measurement in Education, 2015
This study examines the use of cross-classified random effects models (CCrem) and cross-classified multiple membership random effects models (CCMMrem) to model rater bias and estimate teacher effectiveness. Effect estimates are compared using CTT versus item response theory (IRT) scaling methods and three models (i.e., conventional multilevel…
Descriptors: Teacher Effectiveness, Comparative Analysis, Hierarchical Linear Modeling, Test Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Camilli, Gregory; Fox, Jean-Paul – Journal of Educational and Behavioral Statistics, 2015
An aggregation strategy is proposed to potentially address practical limitation related to computing resources for two-level multidimensional item response theory (MIRT) models with large data sets. The aggregate model is derived by integration of the normal ogive model, and an adaptation of the stochastic approximation expectation maximization…
Descriptors: Factor Analysis, Item Response Theory, Grade 4, Simulation
Chen, Guanhua – ProQuest LLC, 2018
This study is part of a larger design study that iteratively improves a robotics programming curriculum as well as a computational thinking (CT) instrument. Its focus was majorly on CT assessment and particularly on an online CT instrument with logging functionality that can store a student's problem-solving process by recording interactions…
Descriptors: Elementary School Students, Test Construction, Cognitive Tests, Computer Assisted Testing
Falk, Carl F.; Cai, Li – National Center for Research on Evaluation, Standards, and Student Testing (CRESST), 2015
We present a logistic function of a monotonic polynomial with a lower asymptote, allowing additional flexibility beyond the three-parameter logistic model. We develop a maximum marginal likelihood based approach to estimate the item parameters. The new item response model is demonstrated on math assessment data from a state, and a computationally…
Descriptors: Guessing (Tests), Item Response Theory, Mathematics Instruction, Mathematics Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Pohl, Steffi; Gräfe, Linda; Rose, Norman – Educational and Psychological Measurement, 2014
Data from competence tests usually show a number of missing responses on test items due to both omitted and not-reached items. Different approaches for dealing with missing responses exist, and there are no clear guidelines on which of those to use. While classical approaches rely on an ignorable missing data mechanism, the most recently developed…
Descriptors: Test Items, Achievement Tests, Item Response Theory, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Jinming – Journal of Educational and Behavioral Statistics, 2012
The impact of uncertainty about item parameters on test information functions is investigated. The information function of a test is one of the most important tools in item response theory (IRT). Inaccuracy in the estimation of test information can have substantial consequences on data analyses based on IRT. In this article, the major part (called…
Descriptors: Item Response Theory, Tests, Accuracy, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Hung-Yu; Wang, Wen-Chung – Educational and Psychological Measurement, 2014
In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…
Descriptors: Item Response Theory, Hierarchical Linear Modeling, Computation, Test Reliability
Peer reviewed Peer reviewed
Direct linkDirect link
Soares, Tufi M.; Goncalves, Flavio B.; Gamerman, Dani – Journal of Educational and Behavioral Statistics, 2009
In this article, an integrated Bayesian model for differential item functioning (DIF) analysis is proposed. The model is integrated in the sense of modeling the responses along with the DIF analysis. This approach allows DIF detection and explanation in a simultaneous setup. Previous empirical studies and/or subjective beliefs about the item…
Descriptors: Test Bias, Bayesian Statistics, Models, Item Response Theory