NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 150 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Rongjie Huang; Yusheng Sun; Zhifeng Zhang; Bo Wang; Junxia Ma; Yangyang Chu – International Journal of Information and Communication Technology Education, 2024
The innovation capability largely determines the initiative for future development of a region. Higher school is the main position for training innovative talents. Accurate and comprehensive assessment of innovation cultivation capability is an important basis of higher schools for continuous improvement. Thus, this paper focuses on assessing…
Descriptors: Models, Innovation, Higher Education, Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Yibei Yin – International Journal of Web-Based Learning and Teaching Technologies, 2023
In order to study the big data of college students' employment, this paper takes the big data of college students' employment as the premise, analyzes the current employment data by establishing a DBN model, and puts forward relevant management measures, aiming to provide scientific basis for the management of graduates' employment data. The…
Descriptors: College Students, Student Employment, Data Analysis, Artificial Intelligence
Kelli Bird – Association for Institutional Research, 2023
Colleges are increasingly turning to predictive analytics to identify "at-risk" students in order to target additional supports. While recent research demonstrates that the types of prediction models in use are reasonably accurate at identifying students who will eventually succeed or not, there are several other considerations for the…
Descriptors: Prediction, Data Analysis, Artificial Intelligence, Identification
Michael Wade Ashby – ProQuest LLC, 2024
Whether machine learning algorithms effectively predict college students' course outcomes using learning management system data is unknown. Identifying students who will have a poor outcome can help institutions plan future budgets and allocate resources to create interventions for underachieving students. Therefore, knowing the effectiveness of…
Descriptors: Artificial Intelligence, Algorithms, Prediction, Learning Management Systems
Emily J. Barnes – ProQuest LLC, 2024
This quantitative study investigates the predictive power of machine learning (ML) models on degree completion among adult learners in higher education, emphasizing the enhancement of data-driven decision-making (DDDM). By analyzing three ML models - Random Forest, Gradient-Boosting machine (GBM), and CART Decision Tree - within a not-for-profit,…
Descriptors: Artificial Intelligence, Higher Education, Models, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaojing Duan; Bo Pei; G. Alex Ambrose; Arnon Hershkovitz; Ying Cheng; Chaoli Wang – Education and Information Technologies, 2024
Providing educators with understandable, actionable, and trustworthy insights drawn from large-scope heterogeneous learning data is of paramount importance in achieving the full potential of artificial intelligence (AI) in educational settings. Explainable AI (XAI)--contrary to the traditional "black-box" approach--helps fulfilling this…
Descriptors: Academic Achievement, Artificial Intelligence, Prediction, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Heng Zhang; Minhong Wang – Knowledge Management & E-Learning, 2024
With the fast development of artificial intelligence and emerging technologies, automatic recognition of students' facial expressions has received increased attention. Facial expressions are a kind of external manifestation of emotional states. It is important for teachers to assess students' emotional states and adjust teaching activities…
Descriptors: Artificial Intelligence, Models, Recognition (Psychology), Nonverbal Communication
Peer reviewed Peer reviewed
Direct linkDirect link
Ben Markey; David West Brown; Michael Laudenbach; Alan Kohler – Written Communication, 2024
ChatGPT and other LLMs are at the forefront of pedagogical considerations in classrooms across the academy. Many studies have spoken to the technology's capacity to generate one-off texts in a variety of genres. This study complements those by inquiring into its capacity to generate compelling texts at scale. In this study, we quantitatively and…
Descriptors: Content Analysis, Language Usage, Artificial Intelligence, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Rishwinder Singh Baidwan; Radhika; Rakesh Kumar – Journal of Educational Technology, 2024
Artificial intelligence technology has become widely used in many industries, including healthcare, agriculture, banking, social security, and home furnishings, due to the rise and development of this discipline. One of the newest areas of technology in the education industry is AI in Education, where extensive research supports instructional…
Descriptors: Artificial Intelligence, Computer Software, Technology Uses in Education, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Luo, Zhenzhen; Zheng, Chaoyu; Gong, Jun; Chen, Shaolong; Luo, Yong; Yi, Yugen – Education and Information Technologies, 2023
Learning interest affects the way of learning and its process, which is an important factor that affects the learning effect. At present, students' learning interest in a teaching environment is mainly based on a traditional questionnaire or case analysis, which is not conducive for teachers to promptly access students' interest in class to…
Descriptors: Student Interests, Artificial Intelligence, Attention, Psychological Patterns
Kye, Anna – ProQuest LLC, 2023
Every year, the national high school graduation rate is declining and impacting the number of students applying to colleges. Moreover, the majority of students are applying to more than one college. This makes a lot of colleges to be highly competitive in student recruitment for enrollment and thus, the necessity for institutions to anticipate…
Descriptors: Comparative Analysis, Classification, College Enrollment, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Nehyba, Jan; Štefánik, Michal – Education and Information Technologies, 2023
Social sciences expose many cognitively complex, highly qualified, or fuzzy problems, whose resolution relies primarily on expert judgement rather than automated systems. One of such instances that we study in this work is a reflection analysis in the writings of student teachers. We share a hands-on experience on how these challenges can be…
Descriptors: Models, Language, Reflection, Writing (Composition)
Peer reviewed Peer reviewed
Direct linkDirect link
Wulff, Peter; Mientus, Lukas; Nowak, Anna; Borowski, Andreas – International Journal of Artificial Intelligence in Education, 2023
Computer-based analysis of preservice teachers' written reflections could enable educational scholars to design personalized and scalable intervention measures to support reflective writing. Algorithms and technologies in the domain of research related to artificial intelligence have been found to be useful in many tasks related to reflective…
Descriptors: Preservice Teachers, Preservice Teacher Education, Reflection, Writing (Composition)
Peer reviewed Peer reviewed
Direct linkDirect link
Sghir, Nabila; Adadi, Amina; Lahmer, Mohammed – Education and Information Technologies, 2023
The last few years have witnessed an upsurge in the number of studies using Machine and Deep learning models to predict vital academic outcomes based on different kinds and sources of student-related data, with the goal of improving the learning process from all perspectives. This has led to the emergence of predictive modelling as a core practice…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Quan Yuan; Lin Lv; Yolanda Cordero – International Journal of Web-Based Learning and Teaching Technologies, 2023
Relying on the nation's first judicial big data research base for people's courts in Southeast University, Southeast University Law School has set up a training direction for graduate students in legal big data and artificial intelligence, and explored the "three-dimensional, small-scale, wide-ranging, and large-scale ecology." The…
Descriptors: Law Schools, Legal Education (Professions), Graduate Students, Data
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10