Publication Date
In 2025 | 0 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 11 |
Since 2016 (last 10 years) | 16 |
Since 2006 (last 20 years) | 19 |
Descriptor
Artificial Intelligence | 19 |
Models | 19 |
High School Students | 12 |
Prediction | 9 |
Classification | 7 |
At Risk Students | 6 |
Automation | 6 |
Computer Software | 6 |
Data Analysis | 6 |
Foreign Countries | 6 |
Intelligent Tutoring Systems | 6 |
More ▼ |
Source
Author
Publication Type
Reports - Research | 14 |
Journal Articles | 10 |
Collected Works - Proceedings | 4 |
Speeches/Meeting Papers | 3 |
Dissertations/Theses -… | 1 |
Education Level
High Schools | 19 |
Secondary Education | 19 |
Junior High Schools | 10 |
Middle Schools | 10 |
Elementary Education | 6 |
Grade 9 | 6 |
Elementary Secondary Education | 4 |
Grade 8 | 4 |
Higher Education | 4 |
Postsecondary Education | 4 |
Grade 10 | 3 |
More ▼ |
Audience
Location
Brazil | 2 |
Afghanistan | 1 |
Australia | 1 |
Czech Republic | 1 |
Finland | 1 |
Florida | 1 |
Illinois (Chicago) | 1 |
Israel | 1 |
Massachusetts | 1 |
Netherlands | 1 |
North Carolina | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Massachusetts Comprehensive… | 1 |
Youth Risk Behavior Survey | 1 |
What Works Clearinghouse Rating
Jiang, Shiyan; Qian, Yingxiao; Tang, Hengtao; Yalcinkaya, Rabia; Rosé, Carolyn P.; Chao, Jie; Finzer, William – Education and Information Technologies, 2023
As artificial intelligence (AI) technologies are increasingly pervasive in our daily lives, the need for students to understand the working mechanisms of AI technologies has become more urgent. Data modeling is an activity that has been proposed to engage students in reasoning about the working mechanism of AI technologies. While Computational…
Descriptors: Computation, Thinking Skills, Cognitive Processes, Artificial Intelligence
Shiyi Liu; Juan Zheng; Tingting Wang; Zeda Xu; Jie Chao; Shiyan Jiang – AERA Online Paper Repository, 2024
This study introduces a novel approach for predicting student engagement levels in a language-based AI curriculum. The curriculum was integrated into English Language Arts classrooms, in which 106 students from five classes participated five web-based machine learning and text mining modules for 2 weeks. Sentiment and categorical analyses,…
Descriptors: Learner Engagement, Artificial Intelligence, Technology Uses in Education, Language Arts
Jiang, Shiyan; Tang, Hengtao; Tatar, Cansu; Rosé, Carolyn P.; Chao, Jie – Learning, Media and Technology, 2023
It's critical to foster artificial intelligence (AI) literacy for high school students, the first generation to grow up surrounded by AI, to understand working mechanism of data-driven AI technologies and critically evaluate automated decisions from predictive models. While efforts have been made to engage youth in understanding AI through…
Descriptors: Artificial Intelligence, High School Students, Models, Classification
Hunkoog Jho; Minsu Ha – Journal of Baltic Science Education, 2024
This study aimed at examining the performance of generative artificial intelligence to extract argumentation elements from text. Thus, the researchers developed a web-based framework to provide automated assessment and feedback relying on a large language model, ChatGPT. The results produced by ChatGPT were compared to human experts across…
Descriptors: Feedback (Response), Artificial Intelligence, Persuasive Discourse, Models
Mangino, Anthony A.; Smith, Kendall A.; Finch, W. Holmes; Hernández-Finch, Maria E. – Measurement and Evaluation in Counseling and Development, 2022
A number of machine learning methods can be employed in the prediction of suicide attempts. However, many models do not predict new cases well in cases with unbalanced data. The present study improved prediction of suicide attempts via the use of a generative adversarial network.
Descriptors: Prediction, Suicide, Artificial Intelligence, Networks
Yi Gui – ProQuest LLC, 2024
This study explores using transfer learning in machine learning for natural language processing (NLP) to create generic automated essay scoring (AES) models, providing instant online scoring for statewide writing assessments in K-12 education. The goal is to develop an instant online scorer that is generalizable to any prompt, addressing the…
Descriptors: Writing Tests, Natural Language Processing, Writing Evaluation, Scoring
Griggs, Dana M.; Crain-Dorough, Mindy – Qualitative Research Journal, 2021
Purpose: The purposes of this paper are to provide a description of AI and to document and compare two applications of AI, one in program evaluation and another in an applied research study. Design/methodology/approach: Focus groups, interviews and observations were used to gather rich qualitative data which was used to detail Appreciative…
Descriptors: Program Evaluation, Artificial Intelligence, Research Methodology, Qualitative Research
Psyridou, Maria; Tolvanen, Asko; Patel, Priyanka; Khanolainen, Daria; Lerkkanen, Marja-Kristiina; Poikkeus, Anna-Maija; Torppa, Minna – Scientific Studies of Reading, 2023
Purpose: We aim to identify the most accurate model for predicting adolescent (Grade 9) reading difficulties (RD) in reading fluency and reading comprehension using 17 kindergarten-age variables. Three models (neural networks, linear, and mixture) were compared based on their accuracy in predicting RD. We also examined whether the same or a…
Descriptors: Reading Difficulties, Networks, Artificial Intelligence, Predictor Variables
Chenglu Li; Wanli Xing; Walter Leite – British Journal of Educational Technology, 2022
A discussion forum is a valuable tool to support student learning in online contexts. However, interactions in online discussion forums are sparse, leading to other issues such as low engagement and dropping out. Recent educational studies have examined the affordances of conversational agents (CA) powered by artificial intelligence (AI) to…
Descriptors: Computer Mediated Communication, Group Discussion, Artificial Intelligence, Safety
Anika Alam; A. Brooks Bowden – Society for Research on Educational Effectiveness, 2024
Background: The importance of high school completion for jobs and postsecondary opportunities is well- documented. Combined with federal laws where high school graduation rate is a core performance indicator, school systems and states face pressure to actively monitor and assess high school completion. This proposal employs machine learning…
Descriptors: Dropout Characteristics, Prediction, Artificial Intelligence, At Risk Students
Li, Hang; Ding, Wenbiao; Liu, Zitao – International Educational Data Mining Society, 2020
With the rapid emergence of K-12 online learning platforms, a new era of education has been opened up. It is crucial to have a dropout warning framework to preemptively identify K-12 students who are at risk of dropping out of the online courses. Prior researchers have focused on predicting dropout in Massive Open Online Courses (MOOCs), which…
Descriptors: At Risk Students, Online Courses, Elementary Secondary Education, Learning Modalities
Christie, S. Thomas; Jarratt, Daniel C.; Olson, Lukas A.; Taijala, Taavi T. – International Educational Data Mining Society, 2019
Schools across the United States suffer from low on-time graduation rates. Targeted interventions help at-risk students meet graduation requirements in a timely manner, but identifying these students takes time and practice, as warning signs are often context-specific and reflected in a combination of attendance, social, and academic signals…
Descriptors: Dropout Prevention, At Risk Students, Artificial Intelligence, Decision Support Systems
Michelle P. Banawan; Jinnie Shin; Tracy Arner; Renu Balyan; Walter L. Leite; Danielle S. McNamara – Grantee Submission, 2023
Academic discourse communities and learning circles are characterized by collaboration, sharing commonalities in terms of social interactions and language. The discourse of these communities is composed of jargon, common terminologies, and similarities in how they construe and communicate meaning. This study examines the extent to which discourse…
Descriptors: Algebra, Discourse Analysis, Semantics, Syntax
Yorek, Nurettin; Ugulu, Ilker – Educational Research and Reviews, 2015
In this study, artificial neural networks are suggested as a model that can be "trained" to yield qualitative results out of a huge amount of categorical data. It can be said that this is a new approach applied in educational qualitative data analysis. In this direction, a cascade-forward back-propagation neural network (CFBPN) model was…
Descriptors: Student Attitudes, Classification, Qualitative Research, Networks
Baker, Ryan S. J. d.; Corbett, Albert T.; Gowda, Sujith M. – Journal of Educational Psychology, 2013
Recently, there has been growing emphasis on supporting robust learning within intelligent tutoring systems, assessed by measures such as transfer to related skills, preparation for future learning, and longer term retention. It has been shown that different pedagogical strategies promote robust learning to different degrees. However, the student…
Descriptors: Intelligent Tutoring Systems, Educational Technology, Genetics, Science Instruction
Previous Page | Next Page »
Pages: 1 | 2