NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 202442
Audience
Laws, Policies, & Programs
Assessments and Surveys
Michigan Test of English…1
What Works Clearinghouse Rating
Showing 1 to 15 of 42 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Teo Susnjak – International Journal of Artificial Intelligence in Education, 2024
A significant body of recent research in the field of Learning Analytics has focused on leveraging machine learning approaches for predicting at-risk students in order to initiate timely interventions and thereby elevate retention and completion rates. The overarching feature of the majority of these research studies has been on the science of…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, At Risk Students
Peer reviewed Peer reviewed
Direct linkDirect link
Seamus Donnelly; Caroline Rowland; Franklin Chang; Evan Kidd – Cognitive Science, 2024
Prediction-based accounts of language acquisition have the potential to explain several different effects in child language acquisition and adult language processing. However, evidence regarding the developmental predictions of such accounts is mixed. Here, we consider several predictions of these accounts in two large-scale developmental studies…
Descriptors: Prediction, Error Patterns, Syntax, Priming
James A. Michaelov – ProQuest LLC, 2024
In recent years, converging evidence has suggested that prediction plays a role in language comprehension, as it appears to do in information processing in a range of cognitive domains. Much of the evidence for this comes from the N400, a neural index of the processing of meaningful stimuli which has been argued to index the extent to which a word…
Descriptors: Prediction, Language Processing, Brain Hemisphere Functions, Linguistic Input
Peer reviewed Peer reviewed
Direct linkDirect link
John Hollander; Andrew Olney – Cognitive Science, 2024
Recent investigations on how people derive meaning from language have focused on task-dependent shifts between two cognitive systems. The symbolic (amodal) system represents meaning as the statistical relationships between words. The embodied (modal) system represents meaning through neurocognitive simulation of perceptual or sensorimotor systems…
Descriptors: Verbs, Symbolic Language, Language Processing, Semantics
Peer reviewed Peer reviewed
Direct linkDirect link
Samah AlKhuzaey; Floriana Grasso; Terry R. Payne; Valentina Tamma – International Journal of Artificial Intelligence in Education, 2024
Designing and constructing pedagogical tests that contain items (i.e. questions) which measure various types of skills for different levels of students equitably is a challenging task. Teachers and item writers alike need to ensure that the quality of assessment materials is consistent, if student evaluations are to be objective and effective.…
Descriptors: Test Items, Test Construction, Difficulty Level, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Jutta Kray; Linda Sommerfeld; Arielle Borovsky; Katja Häuser – Child Development Perspectives, 2024
Prediction error plays a pivotal role in theories of learning, including theories of language acquisition and use. Researchers have investigated whether and under which conditions children, like adults, use prediction to facilitate language comprehension at different levels of linguistic representation. However, many aspects of the reciprocal…
Descriptors: Prediction, Child Development, Language Acquisition, Error Analysis (Language)
Peer reviewed Peer reviewed
Direct linkDirect link
Marian Marchal; Merel C. J. Scholman; Vera Demberg – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2024
Linguistic phenomena (e.g., words and syntactic structure) co-occur with a wide variety of meanings. These systematic correlations can help readers to interpret a text and create predictions about upcoming material. However, to what extent these correlations influence discourse processing is still unknown. We address this question by examining…
Descriptors: Statistical Analysis, Correlation, Discourse Analysis, Cues
Peer reviewed Peer reviewed
Direct linkDirect link
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Peer reviewed Peer reviewed
Direct linkDirect link
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – International Journal of Artificial Intelligence in Education, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Peer reviewed Peer reviewed
Direct linkDirect link
Spyridoula Cheimariou; Laura M. Morett – Communication Disorders Quarterly, 2024
One of the basic tenets of predictive theories of language processing is that of misprediction cost. Post-N400 positive event-related potential (ERP) components are suitable for studying misprediction cost but are not adequately described, especially in older adults, who show attenuated N400 ERP effects. We report a secondary analysis of a…
Descriptors: Prediction, Costs, Older Adults, Aging (Individuals)
Samer A. Nour Eddine – ProQuest LLC, 2024
In this thesis, I use a combination of simulations and empirical data to demonstrate that a small set of structural and functional principles - the basic tenets of predictive coding theory - succinctly accounts for a very wide range of properties in the language processing system. Predictive coding approximates hierarchical Bayesian inference via…
Descriptors: Semantics, Simulation, Psycholinguistics, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Lixiang Yan; Lele Sha; Linxuan Zhao; Yuheng Li; Roberto Martinez-Maldonado; Guanliang Chen; Xinyu Li; Yueqiao Jin; Dragan Gaševic – British Journal of Educational Technology, 2024
Educational technology innovations leveraging large language models (LLMs) have shown the potential to automate the laborious process of generating and analysing textual content. While various innovations have been developed to automate a range of educational tasks (eg, question generation, feedback provision, and essay grading), there are…
Descriptors: Educational Technology, Artificial Intelligence, Natural Language Processing, Educational Innovation
Peer reviewed Peer reviewed
Direct linkDirect link
Tal Waltzer; Celeste Pilegard; Gail D. Heyman – International Journal for Educational Integrity, 2024
The release of ChatGPT in 2022 has generated extensive speculation about how Artificial Intelligence (AI) will impact the capacity of institutions for higher learning to achieve their central missions of promoting learning and certifying knowledge. Our main questions were whether people could identify AI-generated text and whether factors such as…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, College Students
Noa Attali – ProQuest LLC, 2024
In this dissertation, I investigate how people navigate ambiguity in everyday speech, with a focus on quantifier-negation sentences. Combining corpus analysis, behavioral experiments, and computational modeling in the Rational Speech Act framework, I explore preferred interpretations of quantifier-negation and examine the contexts and prosodies…
Descriptors: Language Processing, Ambiguity (Semantics), Intonation, Suprasegmentals
Peer reviewed Peer reviewed
Direct linkDirect link
Dragos-Georgian Corlatescu; Micah Watanabe; Stefan Ruseti; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Modeling reading comprehension processes is a critical task for Learning Analytics, as accurate models of the reading process can be used to match students to texts, identify appropriate interventions, and predict learning outcomes. This paper introduces an improved version of the Automated Model of Comprehension, namely version 4.0. AMoC has its…
Descriptors: Computer Software, Artificial Intelligence, Learning Analytics, Natural Language Processing
Previous Page | Next Page »
Pages: 1  |  2  |  3