Publication Date
In 2025 | 0 |
Since 2024 | 21 |
Descriptor
Item Response Theory | 13 |
Models | 8 |
Accuracy | 7 |
Psychometrics | 7 |
Simulation | 7 |
Computation | 5 |
Measurement | 5 |
Algorithms | 4 |
Bayesian Statistics | 4 |
Comparative Analysis | 4 |
Data Analysis | 4 |
More ▼ |
Source
Grantee Submission | 21 |
Author
Chun Wang | 5 |
Gongjun Xu | 5 |
Matthew J. Madison | 3 |
Zhiyong Zhang | 3 |
Amanda Goodwin | 2 |
Lientje Maas | 2 |
Matthew Naveiras | 2 |
Sun-Joo Cho | 2 |
A. Corinne Huggins-Manley | 1 |
Alanna Gillis | 1 |
Amber Benedict | 1 |
More ▼ |
Publication Type
Reports - Research | 20 |
Journal Articles | 8 |
Opinion Papers | 1 |
Education Level
Audience
Location
Kentucky (Louisville) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Big Five Inventory | 1 |
Program for International… | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Saijun Zhao; Zhiyong Zhang; Hong Zhang – Grantee Submission, 2024
Mediation analysis is widely applied in various fields of science, such as psychology, epidemiology, and sociology. In practice, many psychological and behavioral phenomena are dynamic, and the corresponding mediation effects are expected to change over time. However, most existing mediation methods assume a static mediation effect over time,…
Descriptors: Bayesian Statistics, Statistical Inference, Longitudinal Studies, Attribution Theory
Xiao Liu; Zhiyong Zhang; Kristin Valentino; Lijuan Wang – Grantee Submission, 2024
Parallel process latent growth curve mediation models (PP-LGCMMs) are frequently used to longitudinally investigate the mediation effects of treatment on the level and change of outcome through the level and change of mediator. An important but often violated assumption in empirical PP-LGCMM analysis is the absence of omitted confounders of the…
Descriptors: Mediation Theory, Bayesian Statistics, Growth Models, Monte Carlo Methods
Ziqian Xu; Fei Gao; Anqi Fa; Wen Qu; Zhiyong Zhang – Grantee Submission, 2024
Conditional process models, including moderated mediation models and mediated moderation models, are widely used in behavioral science research. However, few studies have examined approaches to conduct statistical power analysis for such models and there is also a lack of software packages that provide such power analysis functionalities. In this…
Descriptors: Statistical Analysis, Sample Size, Mediation Theory, Monte Carlo Methods

Marcelo Andrade da Silva; A. Corinne Huggins-Manley; Jorge Luis Bazan; Amber Benedict – Grantee Submission, 2024
A Q-matrix is a binary matrix that defines the relationship between items and latent variables and is widely used in diagnostic classification models (DCMs), and can also be adopted in multidimensional item response theory (MIRT) models. The construction process of the Q-matrix is typically carried out by experts in the subject area of the items…
Descriptors: Q Methodology, Matrices, Item Response Theory, Educational Assessment
Jiaying Xiao; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Accurate item parameters and standard errors (SEs) are crucial for many multidimensional item response theory (MIRT) applications. A recent study proposed the Gaussian Variational Expectation Maximization (GVEM) algorithm to improve computational efficiency and estimation accuracy (Cho et al., 2021). However, the SE estimation procedure has yet to…
Descriptors: Error of Measurement, Models, Evaluation Methods, Item Analysis
Nianbo Dong; Benjamin Kelcey; Jessaca Spybrook; Yanli Xie; Dung Pham; Peilin Qiu; Ning Sui – Grantee Submission, 2024
Multisite trials that randomize individuals (e.g., students) within sites (e.g., schools) or clusters (e.g., teachers/classrooms) within sites (e.g., schools) are commonly used for program evaluation because they provide opportunities to learn about treatment effects as well as their heterogeneity across sites and subgroups (defined by moderating…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Educational Research, Effect Size
Lientje Maas; Matthew J. Madison; Matthieu J. S. Brinkhuis – Grantee Submission, 2024
Diagnostic classification models (DCMs) are psychometric models that yield probabilistic classifications of respondents according to a set of discrete latent variables. The current study examines the recently introduced one-parameter log-linear cognitive diagnosis model (1-PLCDM), which has increased interpretability compared with general DCMs due…
Descriptors: Clinical Diagnosis, Classification, Models, Psychometrics
Madeline A. Schellman; Matthew J. Madison – Grantee Submission, 2024
Diagnostic classification models (DCMs) have grown in popularity as stakeholders increasingly desire actionable information related to students' skill competencies. Longitudinal DCMs offer a psychometric framework for providing estimates of students' proficiency status transitions over time. For both cross-sectional and longitudinal DCMs, it is…
Descriptors: Diagnostic Tests, Classification, Models, Psychometrics
Weicong Lyu; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Data harmonization is an emerging approach to strategically combining data from multiple independent studies, enabling addressing new research questions that are not answerable by a single contributing study. A fundamental psychometric challenge for data harmonization is to create commensurate measures for the constructs of interest across…
Descriptors: Data Analysis, Test Items, Psychometrics, Item Response Theory
Matthew J. Madison; Stefanie Wind; Lientje Maas; Kazuhiro Yamaguchi; Sergio Haab – Grantee Submission, 2024
Diagnostic classification models (DCMs) are psychometric models designed to classify examinees according to their proficiency or nonproficiency of specified latent characteristics. These models are well suited for providing diagnostic and actionable feedback to support intermediate and formative assessment efforts. Several DCMs have been developed…
Descriptors: Diagnostic Tests, Classification, Models, Psychometrics
Chenchen Ma; Jing Ouyang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Survey instruments and assessments are frequently used in many domains of social science. When the constructs that these assessments try to measure become multifaceted, multidimensional item response theory (MIRT) provides a unified framework and convenient statistical tool for item analysis, calibration, and scoring. However, the computational…
Descriptors: Algorithms, Item Response Theory, Scoring, Accuracy
Esther Ulitzsch; Qiwei He; Steffi Pohl – Grantee Submission, 2024
This is an editorial for a special issue "Innovations in Exploring Sequential Process Data" in the journal Zeitschrift für Psychologie. Process data refer to log files generated by human-computer interactive items. They document the entire process, including keystrokes, mouse clicks as well as the associated time stamps, performed by a…
Descriptors: Educational Innovation, Man Machine Systems, Educational Technology, Computer Assisted Testing
Sun-Joo Cho; Amanda Goodwin; Matthew Naveiras; Paul De Boeck – Grantee Submission, 2024
Explanatory item response models (EIRMs) have been applied to investigate the effects of person covariates, item covariates, and their interactions in the fields of reading education and psycholinguistics. In practice, it is often assumed that the relationships between the covariates and the logit transformation of item response probability are…
Descriptors: Item Response Theory, Test Items, Models, Maximum Likelihood Statistics
Jennifer Hill; George Perrett; Stacey A. Hancock; Le Win; Yoav Bergner – Grantee Submission, 2024
Most current statistics courses include some instruction relevant to causal inference. Whether this instruction is incorporated as material on randomized experiments or as an interpretation of associations measured by correlation or regression coefficients, the way in which this material is presented may have important implications for…
Descriptors: Statistics Education, Teaching Methods, Attribution Theory, Undergraduate Students
Robert Shand; Stephen M. Leach; Fiona M. Hollands; Bo Yan; Dena Dossett; Florence Chang; Yilin Pan – Grantee Submission, 2024
This research-practice partnership (RPP) focused on developing and testing metrics and tools to foster improved evidence-based budgetary decision-making. The expectation was that research findings would directly influence decisions about program expansion, contraction, or elimination. Instead, unexpected findings led to unexpected uses: changes in…
Descriptors: Theory Practice Relationship, Partnerships in Education, Budgets, Decision Making
Previous Page | Next Page »
Pages: 1 | 2