NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Paiheng Xu; Jing Liu; Nathan Jones; Julie Cohen; Wei Ai – Annenberg Institute for School Reform at Brown University, 2024
Assessing instruction quality is a fundamental component of any improvement efforts in the education system. However, traditional manual assessments are expensive, subjective, and heavily dependent on observers' expertise and idiosyncratic factors, preventing teachers from getting timely and frequent feedback. Different from prior research that…
Descriptors: Educational Quality, Educational Assessment, Teacher Effectiveness, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Dorottya Demszky; Jing Liu; Heather C. Hill; Dan Jurafsky; Chris Piech – Educational Evaluation and Policy Analysis, 2024
Providing consistent, individualized feedback to teachers is essential for improving instruction but can be prohibitively resource-intensive in most educational contexts. We develop M-Powering Teachers, an automated tool based on natural language processing to give teachers feedback on their uptake of student contributions, a high-leverage…
Descriptors: Online Courses, Automation, Feedback (Response), Large Group Instruction
Dorottya Demszky; Jing Liu; Heather C. Hill; Shyamoli Sanghi; Ariel Chung – Annenberg Institute for School Reform at Brown University, 2023
While recent studies have demonstrated the potential of automated feedback to enhance teacher instruction in virtual settings, its efficacy in traditional classrooms remains unexplored. In collaboration with TeachFX, we conducted a pre-registered randomized controlled trial involving 523 Utah mathematics and science teachers to assess the impact…
Descriptors: Elementary Secondary Education, Mathematics Teachers, Science Teachers, Automation
Zachary Himmelsbach; Heather C. Hill; Jing Liu; Dorottya Demszky – Annenberg Institute for School Reform at Brown University, 2023
This study provides the first large-scale quantitative exploration of mathematical language use in U.S. classrooms. Our approach employs natural language processing techniques to describe variation in the use of mathematical language in 1,657 fourth and fifth grade lessons by teachers and students in 317 classrooms in four districts over three…
Descriptors: Mathematics Education, Mathematics Instruction, Teaching Methods, Elementary School Mathematics